Novel polymers release their drug cargo in response to body temperature

December 23, 2011 By Lee Swee Heng
Credit: iStockphoto.com/saffetucuncu

A critical step in advancing medical treatment is the development of novel drug delivery methods. While a simple tablet, taken by the patient with a sip of water, may be the easiest way to administer a drug, this may not always be the most suitable. Some drugs are subjected to degradation by the body, while others, such as cancer medications, can be more effective if they are delivered directly to the diseased tissue site. Such a delivery could improve the effectiveness of the treatment and potentially reduce side effects.

Yiyan Yang and Jeremy Tan from the A*STAR Institute of Bioengineering and Nanotechnology, working in collaboration with researchers from the IBM Almaden Research Center and Stanford University in the USA, have reported the preparation of biodegradable, water-soluble polymers that can be loaded with the cancer drug and injected directly into tumor tissues. Warming to body temperature causes the release of the therapeutic cargo with the system showing improvement in killing over treatment with the drug alone.

Rather than being made from repeating units of a single monomer, the polymers described are a type of —a polymer with one block that contains hydrophilic and hydrophobic groups and another block that contains hydrophobic groups. It is through the careful balance between these groups that the temperature-responsive property of the polymer is achieved.

To make the copolymers, Yang and co-workers used the process of living polymerization, which allows the polymer chains to keep growing until the supply of monomer is exhausted. When more monomers are added, polymerization will restart. The approach allows polymers with different sized blocks of hydrophilic and hydrophobic groups to be built easily to optimize the properties. It also results in polymers with a narrow distribution of molecular weights—an important factor in producing polymers with consistent properties throughout a sample.

Thermoresponsive polymers have been studied before, with one of the most intensively investigated being poly(N-isopropylacrylamide) (PNIPAAm), which was first synthesized in the 1950s. The critical difference in the new polymers described by Yang and co-workers is that they are both non-toxic and biodegradable. “After these polymers performed their task of delivering their important cargos, they should break down and be excreted without significant additional side effects,” says Yang. “We are now planning to further work with the IBM Almaden Research Center and other industrial partners to evaluate the in vivo toxicity and efficacy of this system for the delivery of therapeutics.”

Explore further: Nanoscale packaging could aid delivery of cancer-fighting drugs

More information: Research article in Biomaterials

Related Stories

Clicking synthetic and biological molecules together

February 19, 2008

Dutch researcher Joost Opsteen has developed a method to click polymers together in a controlled manner. Using this method, he can even attach proteins to nanoballs. For instance, this approach could be used to transport ...

CSIRO grants global license for new polymer technology

July 6, 2010

CSIRO has signed a global licensing agreement for its patented RAFT technology. Reversible Addition-Fragmentation chain Transfer (or RAFT) technology is an elegant and powerful polymerisation process that has given rise to ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.