Scientists engineer human stem cells

Dec 06, 2013

In an important scientific breakthrough in regenerative medicine, researchers at A*STAR's Genome Institute of Singapore have successfully converted human embryonic stem cells (hESCs) cultured in the laboratory to a state that is closer to the cells found in the human blastocyst[1]. This means that scientists are one step closer to cultivating stem cells for research and potential therapeutic purposes, as well as understanding the processes of early human development. These findings are published in the current issue of the prestigious science journal Cell Stem Cell.

Pluripotent stem cells such as hESCs and induced (iPSCs) have the remarkable ability to differentiate into various cell types of the adult body while proliferating continuously in culture. In the field of regenerative medicine, these cells are potentially a limitless resource to generate cells of different body parts such as the eye, liver, brain, kidney and pancreas to treat degenerative diseases or replace of worn out organs. Pluripotency is the essential property of the cells of the blastocyst in the early stages of human development. However, when cultured in the laboratory, these cells adopt molecular differences, which limit their use in therapeutic applications or disease modeling.

Using previously established hESCs, the researchers screened for culture conditions that could induce a stable change of cell state. They found that the use of a specific combination of small molecules and growth factors, termed 3iL, converted hESCs to a state that resembled cells within the native blastocysts.

The GIS team's discovery will empower researchers with a novel resource to tackle existing challenges. "For the past 15 years, scientists could only work on a single hESC state. We now provide a novel cell state for all hESC applications," said Prof Ng Huck Hui. "The results from the study will open many new possibilities to study human development and disease. The 3iL hESCs will help to overcome some of the obstacles that limit the potential of in ."

The researchers also found that many genes which are active in blastocyst cells but inactive in hESCs were turned on again in this novel cell state. These re-activated genes also showed epigenetic differences. "Every cell has a 'memory', the epigenome, which is a layer on top of the genome that marks active and inactive genes," explained Dr Jonathan Göke, a bioinformatician from GIS "When we looked into the epigenome of these 3iL cells, we found that this 'memory' was dramatically different; the cells appeared to be partly set back to the state of the embryo."

To demonstrate how these 3iL hESCs can be used to obtain insights into human development, Prof Ng's team studied the regulatory system that controls these developmental genes. "Studies of basic mechanisms like gene regulation require a large number of ," said Dr Chan Yun Shen, co-lead author, and researcher at GIS. "This is the first time that we are able to see how these genes are potentially regulated. While additional experiments will help to fully characterize these 3iL hESCs, we can already see that they provide an unprecedented way to study early without the use of any blastocysts."

Explore further: Toxin targets discovered

More information: "Induction of a Human Pluripotent State with Distinct Regulatory Circuitry that Resembles Preimplantation Epiblast." Yun-Shen Chan, Jonathan Göke, Jia-Hui Ng, Xinyi Lu, Kevin Andrew Uy Gonzales, Cheng-Peow Tan, Wei-Quan Tng, Zhong-Zhi Hong, Yee-Siang Lim, and Huck-Hui Ng. Cell Stem Cell, December 2013.

add to favorites email to friend print save as pdf

Related Stories

Scientists isolate new human pluripotent stem cells

Oct 31, 2013

One of the obstacles to employing human embryonic stem cells for medical use lies in their very promise: They are born to rapidly differentiate into other cell types. Until now, scientists have not been able ...

Scientists perform genome-wide study of human stem cells

Oct 18, 2010

A team of scientists from Singapore led by the Genome Institute of Singapore (GIS) and the Institute of Molecular and Cell Biology (IMCB), two biomedical research institutes of Singapore's Agency of Science, Technology and ...

Recommended for you

Toxin targets discovered

2 hours ago

Research that provides a new understanding of how bacterial toxins target human cells is set to have major implications for the development of novel drugs and treatment strategies.

New method for quickly determining antibiotic resistance

9 hours ago

Scientists from Uppsala University, the Science for Life Laboratory (SciLifeLab) in Stockholm and Uppsala University Hospital have developed a new method of rapidly identifying which bacteria are causing an infection and ...

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.