Human umbilical cord blood cell co-culture supports embryonic stem cell expansion

November 15, 2012, Cell Transplantation Center of Excellence for Aging and Brain Repair

Researchers in Taiwan have developed a "safe, feasible and robust co-culture system" supplied by human umbilical cord mensenchymal stem cells (HUCMSCs) to feed the sustained culture used for human embryonic stem cell (hESC) expansion prior to cell transplantation. The co-culture, said the researchers, "appears to eliminate the most feared characteristic of transplanted hESCs," which is their propensity to form tumors.

The study, published in the current issue of , is now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

" have pluripotent potential," said study co-author Dr. Tang-Yuan Chu of the Buddhist Tzu Chi General Hospital at Tzu Chi University in Hualien, Taiwan. "The sustained maintenance of hESCs depends on a co-culture with an animal based "feeder" that can create the risk for transmitting nonhuman materials and unknown pathogens. To solve this problem, human tissues have been used as feeders."

The expansion of pluripotent hESCs traditionally requires a feeder culture, meaning that a variety of animal and human tissues have been used in feeder cultures.

The researchers note that while hESCs have been successfully co-cultured using human fetal muscle and , adult epithelial cells, foreskin cells, and bone marrow stem cells, their study used hUCMScs to create a co-culture. They said that using hUCMSCs as a source feeder has several advantages, including their wide availability, ease of handling and low .

However, according to the researchers, when using various mouse or primate tissues, and even when using human tissues for co-cultures, tumor-like formations called "teratomas" - growths containing tissues belonging to all three germ layers - often form. Although undesirable, teratomas have been used as a marker for the ability of stem cells to be able to develop pluripotency.

This study demonstrated that pluripotency development need not necessarily be teratoma forming.

"We suggest that the feeder we developed from hUCMSCs may support the transition of hESCs that does not grow teratomas because, unlike tissue sources for other feeders, by using hUCMSCs we did not use material comprised of all three germ layers," said the researchers.

"In addition to eliminating teratomas, the proposed system also significantly reduces the workload involved in the preparation of new feeder lines," they concluded.

Explore further: Key protein reveals secret of stem cell pluripotency

More information: Ding, D-C.; Shyu, W-C.; Lin, S-Z.; Liu, H-W; Chiou, S-H.; Chu, T-Y. Human Umbilical Cord Mesenchymal Stem Cells Support Nontumorigenic Expansion of Human Embryonic Stem Cells Cell Transplant. 21(7):1515-1527; 2012.

Related Stories

Key protein reveals secret of stem cell pluripotency

September 6, 2011

A protein that helps maintain mouse stem cell pluripotency has been identified by researchers at the RIKEN Omics Science Center. The finding, published in the August issue of Stem Cells (first published online July 26, 2011), ...

Stem cells thrive on superficial relationships

August 10, 2012

Stem cells are renowned for their capacity to develop into a wide range of mature cell types but they cannot maintain this flexibility on their own. In the body, neighboring cells help maintain this ‘pluripotent’ ...

Recommended for you

Breakthrough test screens for all known bacterial infections

October 23, 2018

Scientists at the Center for Infection and Immunity (CII) in the Columbia University Mailman School of Public Health have developed the first diagnostic platform that can simultaneously screen for all known human pathogenic ...

New technique promises more accurate genomes

October 23, 2018

University of Adelaide researchers have developed a new technique that will aid in a more accurate reconstruction of human genomes by determining the exact sections of the genome that come from each parent.

Studying the hotbed of horizontal gene transfers

October 23, 2018

For over 200,000 years, humans and their gut microbiomes have coevolved into some of the most complex collections of living organisms on the planet. But as human lifestyles vary from the urban to rural, so do the bacterial ...

Researchers have discovered a new cell structure

October 23, 2018

A new structure in human cells has been discovered by researchers at Karolinska Institutet in Sweden in collaboration with colleagues in the U.K. The structure is a new type of protein complex that the cell uses to attach ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.