Team discovers how plants avoid sunburn

Aug 06, 2013

A Dartmouth-led team has discovered a group of stress-related proteins that explains how plants avoid sunburn in intense light, a finding that one day could help biotechnologists to develop crops that can better cope with hotter, drier conditions occurring in climate change.

Their findings appear this week in the journal PNAS. The study, titled "Subset of transcription factors required for the early response of Arabidopsis to excess light," was led by researchers from Dartmouth, the Salk Institute for Biological Studies and Australian National University.

Too much or too little sunlight or rapidly fluctuating light conditions cause stress to plants, which have sophisticated control systems to utilize light energy for photosynthesis and simultaneously protect themselves from sunburn from very bright sunlight. Plants perform these regulations mainly by regulating nuclear and multiple intracellular signaling pathways have been shown to play a role in the genomic response of plants to stress, but the processes are not well understood.

In this study, Professor Hou-Sung Jung and his colleagues showed that a group of transcription factors called Heat Shock Transcription Factors are responsible for fast responses of plants to changes in —from light conditions that are optimal for photosynthesis to bright light that causes sunburn. The , which are proteins that control the flow of genetic information, generate an enzyme responsible for detoxifying harmful molecules, which accumulate under very bright light.

Currently in his laboratory, Jung is characterizing factors involved in plants' responses to prolonged bright light. Studying these short-term and long-term response factors may make it possible to generate plants with increased protection from bright light with enhanced photosynthesis rates.

Explore further: KISS ME DEADLY proteins may help improve crop yields

add to favorites email to friend print save as pdf

Related Stories

Plants communicate what type of light they want

Apr 08, 2013

Enormous amounts of energy are wasted in greenhouses where our food is grown as a result of the plants receiving too much and the wrong kind of light. This can also stress and damage the plants. Researchers ...

KISS ME DEADLY proteins may help improve crop yields

May 27, 2013

Dartmouth College researchers have identified a new regulator for plant hormone signaling—the KISS ME DEADLY family of proteins (KMDs) – that may help to improve production of fruits, vegetables and grains.

Uncovering quantum secret in photosynthesis

Jun 20, 2013

The efficient conversion of sunlight into useful energy is one of the challenges which stand in the way of meeting the world's increasing energy demand in a clean, sustainable way without relying on fossil ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

13 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

15 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...