Predictive models of environmental reaction kinetics made more accurate, scalable

Aug 09, 2013
Predictive models of environmental reaction kinetics made more accurate, scalable
Integrated computational and experimental pore-scale reaction kinetics studies by a team of EMSL staff and users revealed an approach to yield more accurate and scalable predictive models of biogeochemical interactions in soil. Shown above is the team’s micromodel after reacting with FMNH2 at pH 7.0 for 21 hours. Blue indicates hematite coating; yellow indicates uncoated silicon. Credit: American Chemical Society

Predictive models of biogeochemical interactions in soils are more accurate and scalable if they consider the reaction chemistry that occurs in distinct soil pore structures, or domains. These findings are the result of integrated computational and experimental pore-scale reaction kinetics studies conducted by a team of EMSL scientists and users.

For their studies, the team built a silicon micromodel (8.1 mm × 4.5 mm × 0.028 mm) with a pore-scale structure mimicking that found in nature and coated it with a thin film of the hematite (Fe2O3). Iron oxides play a key role in electron exchanges that occur in soil among minerals and microbes. This exchange affects microbial respiration as well as the and, thus, mobility of metals—an especially important consideration in the case of contaminants, such as radionuclides. The team injected the hematite-coated micromodel with reduced flavin mononucleotide (FMNH2), a form of vitamin B2 and effective agent of used by , in solutions of varying acidity.

As the reduced FMNH2 gave electrons to and dissolved the hematite, the team studied hematite dissolution both in situ and in real time by using spectroscopy and microscopy tools as well as by measuring the concentration of iron in solution. The hematite reaction kinetics were distinctly different in three domains: (1) an advection domain consisting of a large pore, where fluid flows with relative freedom; (2) a macropore domain, where diffusion dominates but that is well connected to the advection domain; and (3) a micropore domain, where fluid is stagnant and resides in soil aggregates. Compared to a traditional model, which uses one overall reaction kinetic value, the three-domain reaction kinetics system more closely represents real-world conditions. Moreover, multi-domain models enable more accurate scaling of reaction kinetics from the pore scale to the field scale. Such models, with their accuracy and scalability, will be more effective at predicting the environmental impact of geochemical and microbial activities in soil and can help design improved remediation strategies.

Explore further: Chemists tackle battery overcharge problem

More information: Zhang C, C Liu, and Z Shi. 2013. Micromodel Investigation of Transport Effect on the Kinetics of Reductive Dissolution of Hematite, Environmental Science & Technology 47(9):4131–4139. DOI: 10.1021/es304006w

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Towards controlled dislocations

13 hours ago

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 0