Predictive models of environmental reaction kinetics made more accurate, scalable

Aug 09, 2013
Predictive models of environmental reaction kinetics made more accurate, scalable
Integrated computational and experimental pore-scale reaction kinetics studies by a team of EMSL staff and users revealed an approach to yield more accurate and scalable predictive models of biogeochemical interactions in soil. Shown above is the team’s micromodel after reacting with FMNH2 at pH 7.0 for 21 hours. Blue indicates hematite coating; yellow indicates uncoated silicon. Credit: American Chemical Society

Predictive models of biogeochemical interactions in soils are more accurate and scalable if they consider the reaction chemistry that occurs in distinct soil pore structures, or domains. These findings are the result of integrated computational and experimental pore-scale reaction kinetics studies conducted by a team of EMSL scientists and users.

For their studies, the team built a silicon micromodel (8.1 mm × 4.5 mm × 0.028 mm) with a pore-scale structure mimicking that found in nature and coated it with a thin film of the hematite (Fe2O3). Iron oxides play a key role in electron exchanges that occur in soil among minerals and microbes. This exchange affects microbial respiration as well as the and, thus, mobility of metals—an especially important consideration in the case of contaminants, such as radionuclides. The team injected the hematite-coated micromodel with reduced flavin mononucleotide (FMNH2), a form of vitamin B2 and effective agent of used by , in solutions of varying acidity.

As the reduced FMNH2 gave electrons to and dissolved the hematite, the team studied hematite dissolution both in situ and in real time by using spectroscopy and microscopy tools as well as by measuring the concentration of iron in solution. The hematite reaction kinetics were distinctly different in three domains: (1) an advection domain consisting of a large pore, where fluid flows with relative freedom; (2) a macropore domain, where diffusion dominates but that is well connected to the advection domain; and (3) a micropore domain, where fluid is stagnant and resides in soil aggregates. Compared to a traditional model, which uses one overall reaction kinetic value, the three-domain reaction kinetics system more closely represents real-world conditions. Moreover, multi-domain models enable more accurate scaling of reaction kinetics from the pore scale to the field scale. Such models, with their accuracy and scalability, will be more effective at predicting the environmental impact of geochemical and microbial activities in soil and can help design improved remediation strategies.

Explore further: Scientists gain first quantitative insights into electron transfer from minerals to microbes

More information: Zhang C, C Liu, and Z Shi. 2013. Micromodel Investigation of Transport Effect on the Kinetics of Reductive Dissolution of Hematite, Environmental Science & Technology 47(9):4131–4139. DOI: 10.1021/es304006w

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

A beautiful, peculiar molecule

Apr 16, 2014

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Metals go from strength to strength

Apr 15, 2014

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

User comments : 0

More news stories

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...