Sulfide and iron work together to reveal a new path for radionuclide sequestration

August 1, 2013
Sulfide and iron work together to reveal a new path for radionuclide sequestration
Sifting radionuclides with sulfur: Technetium sequestration pathways under sulfidogenic conditions stimulated by nZVI offer a possibly more sustainable, environmentally friendly approach to bioremediation.

As an ongoing concern for the Department of Energy's Office of Biological and Environmental Research (DOE-BER), bioremediation strategies that either remove contaminants or retard their mobility in the environment are long-sought-after solutions. Technetium-99, an isotope generated from nuclear fission stemming from Manhattan Project-era plutonium processing, is among the high-priority radionuclides requiring environmental controls.

In one approach to tackle this problem, scientists measured reduction of soluble (99TcO4?) by nano zerovalent iron (nZVI) that had been pre-exposed to sulfide (S2-) in simulated Hanford Site groundwater. nZVI promotes microbial reduction of sulfate (SO42-) to S2- and offers a promising and sustainable method for generating S2- in the environment.

Their work, using a mix of microscopy-, diffraction-, and spectroscopy-aided assessments and conceptual modeling, was designed to provide a fundamental geochemical understanding of Tc sequestration as new sulfide compounds developed in the presence of nZVI, as well as offer an alternative remediation strategy. The scientists examined the evolution of mineral phases during the changing sulfidation states using a mix of EMSL's capabilities and X-ray (XAS) at the Stanford Synchrotron Radiation Lightsource (SSRL).

They coupled this work to Tc sequestration kinetics under incremental sulfur/iron ratios. Their results showed the importance of iron sulfide in Tc sequestration and how sulfidation of nZVI can direct TcO4? sequestration products from Tc(IV) oxide—which is highly susceptible to reoxidation—to Tc(IV) sulfide phases, providing a more favorable sequestration pathway.

Explore further: Microbially produced ferrous iron may decrease technetium concentrations in groundwater

More information: Fan, D. et al. 2013. Reductive Sequestration of Pertechnetate (99TcO4–) by Nano Zerovalent Iron (nZVI) Transformed by Abiotic Sulfide, Environmental Science & Technology 47(10):5302-5310. DOI: 10.1021/es304829z.

Related Stories

Hospital scanner could curb nuclear waste threat

January 29, 2010

Medical equipment used for diagnosis of patients with heart disease and cancer could be a key weapon in stopping nuclear waste seeping into the environment, according to new research.

Recommended for you

Nanostructures taste the rainbow

June 28, 2017

Engineers at Caltech have for the first time developed a light detector that combines two disparate technologies—nanophotonics, which manipulates light at the nanoscale, and thermoelectrics, which translates temperature ...

Injectable plant-based nanoparticles delay tumor progression

June 28, 2017

Researchers from Case Western Reserve University School of Medicine in collaboration with researchers from Dartmouth Geisel School of Medicine and RWTH Aachen University (Germany) have adapted virus particles—that normally ...

A levitated nanosphere as an ultra-sensitive sensor

June 28, 2017

Sensitive sensors must be isolated from their environment as much as possible to avoid disturbances. Scientists at ETH Zurich have now demonstrated how to remove from and add elementary charges to a nanosphere that can be ...

Researchers create very small sensor using 'white graphene'

June 28, 2017

Researchers from TU Delft in The Netherlands, in collaboration with a team at the University of Cambridge (U.K.), have found a way to create and clean tiny mechanical sensors in a scalable manner. They created these sensors ...

Ruthenium rules for new fuel cells

June 28, 2017

Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.