Scientists gain first quantitative insights into electron transfer from minerals to microbes

July 31, 2013
The first quantitative insights into electron transfer from minerals to microbes show that the cytochrome, MtoA, extracts electrons from structural Fe(II) in nanoparticles from the outside in, leaving behind Fe(III) and not damaging the crystal structure. The higher the Fe(II)/Fe(III) ratio in the nanoparticles, the faster the electron transfer.

Scientists have gained the first quantitative insights into electron transfer from minerals to microbes by studying that transfer in a nature-inspired, protein and iron-based nanoparticle system. Iron plays a crucial role in environmental biogeochemistry. It readily exchanges electrons with microbes, transforming from more soluble Fe(II) to less soluble Fe(III). By studying that exchange, researchers better understand iron cycling in the environment and how iron cycling, carbon cycling, and microbial activities are connected. For their studies, the research team used 'tunable' Fe3-xTixO4 nanoparticles in which the Fe(II)/Fe(III) ratio is controlled by replacing Fe atoms with Ti atoms in the nanoparticle lattice—the more Ti, the more Fe(II).

The team exposed nanoparticles with different Fe(II)/Fe(III) ratios in solution to purified MtoA, an iron-oxidizing from the water-dwelling microbe, Sideroxydans lithotrophicus ES-1. They detailed the oxidation kinetics of the nanoparticles by the cytochrome in real time, in situ, and with Ångström-level resolution using a novel tool set. Stopped-flow spectrometry at EMSL was used to monitor protein absorbance changes, which were used to calculate reaction kinetics. Micro-X-ray diffraction at EMSL showed changes in the Fe(II)/Fe(III) ratio in the nanoparticle lattice. X-ray absorption and magnetic circular dichroism spectroscopies with synchrotron resources at the Advanced Light Source revealed changes in the Fe(II)/Fe(III) ratio as well as in at the nanoparticle-cytochrome interface. The team found that MtoA extracted electrons from structural Fe(II) in the nanoparticles starting at the surface then continuing to the interior, leaving behind Fe(III) and not damaging the . Also, the higher the Fe(II)/Fe(III) ratio in the nanoparticles, the faster the electron transfer.

The team's novel system can be adapted to study other key players in geochemistry, such as electron-transfer proteins in Geobacter and Shewanella as well as iron-containing minerals, such as hematite. Fundamental studies such as these have broad implications—from improved biogeochemistry and earth science predictive models to understanding the impact of using for biotechnological applications, such as bioremediation and energy generation.

Explore further: Aquatic microbe oxidizes iron minerals from the surface inward

More information: Liu J, et al. 2013. Fe3-xTixO4 Nanoparticles as Tunable Probes of Microbial Metal Oxidation, Journal of the American Chemical Society. 135(24):8896–8907. DOI: 10.1021/ja4015343

Related Stories

What kind of iron is in the Southern Ocean?

December 11, 2012

(—The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its High Nutrient, Low Chlorophyl zones, areas otherwise rich in ...

Designer particles stand in for layers of subsurface minerals

September 28, 2012

(—To understand how underground pollutants react with magnetite and other minerals, scientists need an easy-to-use mineral stand-in. An international team led by Pacific Northwest National Laboratory created analogous ...

Recommended for you

Clothing fabric keeps you cool in the heat

November 16, 2017

(—Researchers have designed a thermal regulation textile that has a 55% greater cooling effect than cotton, which translates to cooler skin temperatures when wearing clothes made of the new fabric. The material ...

Graphene water filter turns whisky clear

November 14, 2017

Previously graphene-oxide membranes were shown to be completely impermeable to all solvents except for water. However, a study published in Nature Materials, now shows that we can tailor the molecules that pass through these ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.