Potentially life-saving protein takes shape: Ubiquitin's novel forms suggest novel functions

Jul 02, 2013

A tiny protein called ubiquitin – so named because it is present in every cell of living things as dissimilar as hollyhocks and humans - may hold the key to treatment for a variety of diseases from Parkinson's to diabetes. The protein, found in all eukaryotes (organisms with membranous cells), was considered unimportant when it was described in 1975. But scientists now know ubiquitin takes many different forms and is important in basic cellular processes, from controlling cells' circadian clocks to clearing away the harmful build-up of cells found in cancer and other diseases.

To maximize ubiquitin's potential for treating diseases, researchers are working to identify the 's dizzying array of structures, and to understand each form's function. Ubiquitin forms polymeric chains linked by specific amino acids. Each ubiquitin protein can connect to its neighbor through one of eight different , and each combination appears to do something different in a normal cell, says University of Maryland structural David Fushman, whose lab studies these ubiquitin chains and their linkages.

Imagine the cell as a dance floor, thronged with proteins seeking partners, says Fushman, who has studied ubiquitin since 2000. When two ubiquitins join through a lysine, "it's like two hands meeting, but with just a single finger touching that's specific to that lysine." The choice of lysine determines the shape of the ubiquitin chain, and probably also determines its function.

Fushman and his colleagues' newly published research focuses on one of the most common and least studied linkages, the polymeric chain formed by the amino acid Lysine-11. The ubiquitin chains linked by Lysine-11 "are directly involved in cell cycle regulation," Fushman says. To turn that knowledge into medically useful information, "we have to understand exactly how they form and with whom they interact."

Most work of this type is done in a and uses x-ray crystallography to map the structures. Fushman's lab uses a different method that he says produces an environment somewhat closer to nature. The team used nuclear magnetic resonance spectroscopy (NMR) and other techniques to map the Lysine-11-linked chains.

The researchers found these chains take on a different shape in solution than in crystals, and are more flexible than was previously thought. Ubiquitin chains linked via Lysine-11 can form various three-dimensional shapes, and as salt concentrations change, the chains' shape also changes, the team found.

Researcher Carlos Castañeda and others in the Fushman lab reported their results in a paper published July 2 in the biological journal Structure.

The most-studied ubiquitin chain, linked via Lysine-48, is known as a "protein destroyer" because it labels cellular proteins to be broken up for later recycling. The UMD team found the cellular receptors responsible for breaking down proteins interact with Lysine-11 chains, but not as efficiently as with Lysine-48 chains. Therefore protein destruction does not appear to be the main task of the Lysine-11 linked chain, Fushman says; its function is something different and perhaps equally vital to maintaining healthy .

Explore further: New technique reveals immune cell motion through variety of tissues

More information: Carlos A. Castañeda, Tanuja R. Kashyap, Mark A. Nakasone, Susan Krueger and David Fushman, "Unique structural, dynamical, and functional properties of K11-linked polyubiquitin chains" published in Structure, July 2, 2013

Related Stories

Scientists gain new insights into protein disposal

May 28, 2013

Cells have a sophisticated system to control and dispose of defective, superfluous proteins and thus to prevent damage to the body. Dr. Katrin Bagola and Professor Thomas Sommer of the Max Delbrück Center for Molecular Medicine ...

Protein improves efficacy of tumor-killing enzyme

Apr 30, 2013

Scientists have devised a method for delivering tumor cell-killing enzymes in a way that protects the enzyme until it can do its work inside the cell. In their study in mBio, the online open-access journal of the American Societ ...

Using lysine estimates to detect heat damage in DDGS

Jan 14, 2013

Distillers dried grains with solubles (DDGS) are a good source of energy and protein in swine diets. However, they can be damaged by excessive heat during processing, compromising their nutritional value. University of Illinois ...

How disease mutations affect the Parkin protein

May 31, 2013

Researchers at the MRC Laboratory of Molecular Biology in the United Kingdom have determined the crystal structure of Parkin, a protein found in cells that when mutated can lead to a hereditary form of Parkinson's disease. ...

Recommended for you

'Global positioning' for molecules

Dec 19, 2014

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and ...

Cells build 'cupboards' to store metals

Dec 17, 2014

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.