Cells move as concentration shifts

Jul 29, 2013

What do wound healing, cancer metastasis, and bacteria colonies have in common? They all involve the collective displacement of biological cells. New research sheds some new light on the physical mechanisms provoking the displacement of a sheet of cell, known as an epithelium. It typically covers our organs including the stomach and intestine, as well as our epidermis. In a paper about to appear in EPJ E, Martine Ben Amar from Pierre and Marie Curie University in Paris explains the importance of understanding the displacement of the epithelium as a means of influencing the biological process involved in healing. And, ultimately, of helping to minimise scars.

In this study, Ben Amar aims at developing a predictive theoretical based on calculations designed to account for experimental observations.

Her model focuses on particular types of displacement, which are due to molecules— referred to as morphogens—that the cells can feel. In fact, cells are sensitive to their concentration and are therefore attracted in their direction in a process called chemotaxis. Cells can also absorb these molecules at their surface as a means of modifying their concentration and therefore their displacement. In addition, the model takes into account physical parameters such as the substrate friction and the cohesion of the overall tissue.

Ben Amar found that her theory could be applied to better understand the irregularities found at the boundaries of the sheets, which are a signature of the collective behaviour of these cells, previously observed in recent in vitro biophysics experiments. Such irregularities could influence the quality of the future scar. This is important for the quality of vision in the case of cornea scars, and for a possible improvement in the bio-engineering of .

Explore further: Breakthrough in OLED technology

More information: M. Ben Amar (2013), Chemotaxis migration and morphogenesis of living colonies, European Physical Journal E 36: 64, DOI 10.1140/epje/i2013-13064-5

add to favorites email to friend print save as pdf

Related Stories

Make or break for cellular tissues

May 16, 2012

In a study about to be published in the European Physical Journal E, French physicists from the Curie Institute in Paris have demonstrated that the behaviour of a thin layer of cells in contact with an unfavourable substr ...

Giraffes are living proof that cells' pressure matters

Jul 03, 2012

Physicists from the Curie Institute, France, explored the relative impact of the mechanical pressure induced by dividing cells in biological tissues. This approach complements traditional studies on genetic and biochemical ...

Recommended for you

Scientists provide new data on the nature of dark matter

3 hours ago

Recent research conducted by scientists from the University of Granada sheds light on the nature of dark matter, one of the most important mysteries in physics. As indirect evidence provided by its gravitational ...

Giant virus revealed in 3-D using X-ray laser

6 hours ago

For the first time, researchers have produced a 3-D image revealing part of the inner structure of an intact, infectious virus, using a unique X-ray laser at the Department of Energy's SLAC National Accelerator ...

Magnetic vortices in nanodisks reveal information

7 hours ago

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Forschungszentrum Jülich (FZJ) together with a colleague at the French Centre National de la Recherche Scientifique (CNRS) in Strasbourg ...

Breakthrough in OLED technology

Mar 02, 2015

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

Mar 02, 2015

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.