Make or break for cellular tissues

May 16, 2012

In a study about to be published in the European Physical Journal E, French physicists from the Curie Institute in Paris have demonstrated that the behaviour of a thin layer of cells in contact with an unfavourable substrate is akin to that of thin fluid or elastic films. Understanding the mechanism by which a thin layer of cells splits into disjointed patches, thus breaking the layer's structural integrity, bears great significance because the human tissue, or epithelium, covering organs can only fulfil its role if there are no holes or gaps between the cells.

Thanks to the between the cellular layer examined and the well-understood behaviour of thin liquid films, the scientists Stéphane Douezan and Françoise Brochard-Nyart devised a model of the layer's evolution. They considered it as an active, amorphous material made of a continuum of . Because it is subject to a constant competition between neighbouring cell-cell and cell-substrate adhesion, it can either maintain its contiguous structure or break.

The authors investigated the layer's stability when subjected to chemical and physical disturbances. In particular, they scrutinised how the cellular layer reacted to a non-adhesive substrate with little chemical affinity with the cells. They also subjected the cells to a physical disturbance by laying them in substrates with low stiffness, such as soft gels.

The researchers observed what is known as the dewetting phenomenon, whereby the cellular layer is ruptured leading to islands of cells interspersed with dry patches. Dewetting is normally observed in viscous polymer films on slippery surfaces. They concluded that the dewetting phenomenon is due to the cells' distinctive sensitivity to the nature of its substrate, particularly to its decreased stiffness. This means that active, living cells remain governed by the law of physics.

Explore further: Coming Soon: Blood Vessels from a Test Tube?

More information: Douezan S., Brochard-Wyart F. (2012), Dewetting of cellular monolayers, European Physical Journal E, DOI 10.1140/epje/i2012-12034-9

Related Stories

Coming Soon: Blood Vessels from a Test Tube?

June 4, 2007

Our tissues and organs consist of a complex, closely balanced assembly of different types of cells, extracellular matrix, and special signal-carrying molecules. The growth of such structures in the laboratory, perhaps for ...

Researchers fabricate more efficient polymer solar cells

December 2, 2010

(PhysOrg.com) -- Researchers from Iowa State University and the Ames Laboratory have developed a process capable of producing a thin and uniform light-absorbing layer on textured substrates that improves the efficiency of ...

Recommended for you

Flexible ferroelectrics bring two material worlds together

January 17, 2017

Until recently, "flexible ferroelectrics" could have been thought of as the same type of oxymoronic phrase. However, thanks to a new discovery by the U.S. Department of Energy's (DOE) Argonne National Laboratory in collaboration ...

First-ever X-ray image capture of material defect process

January 17, 2017

From blacksmiths forging iron to artisans blowing glass, humans have for centuries been changing the properties of materials to build better tools – from iron horseshoes and swords to glass jars and medicine vials.

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.