New method for mass-producing high-quality DNA molecules

June 2, 2013
An illustration of the production of oligonucleotides. Credit: Björn Högberg

A new method of manufacturing short, single-stranded DNA molecules can solve many of the problems associated with current production methods. The new method, which is described in the scientific periodical Nature Methods, can be of value to both DNA nanotechnology and the development of drugs consisting of DNA fragments.

The for manufacturing short, single-stranded – or oligonucleotides – has been developed by researchers at Karolinska Institutet in Sweden and Harvard University. Such DNA fragments constitute a basic tool for researchers and play a key part in many fields of science. Many of the recent advances in genetic and molecular biological research and development, such as the ability to quickly scan an organism's genome, would not have been possible without oligonucleotides

The new method is versatile and able to solve problems that currently restrict the production of .

"We've used enzymatic production methods to create a system that not only improves the quality of the manufactured oligonucleotides but that also makes it possible to scale up production using bacteria in order to produce large amounts of DNA copies cheaply," says co-developer Björn Högberg at the Swedish Medical Nanoscience Center, part of the Department of Neuroscience at Karolinska Institutet.

The process of bioproduction, whereby bacteria are used to copy , enables the manufacture of large amounts of DNA copies at a low cost. Unlike current methods of synthesising oligonucleotides, where the number of errors increases with the length of the sequence, this new method according to the developers also works well for long oligonucleotides of several hundred nitrogenous bases.

The DNA molecules are first formed as a long string of single-stranded DNA in which the sequence of interest is repeated several times. The long strand forms tiny regions called hairpins, where the strand folds back on itself. These hairpins can then be cut up by enzymes, which serve as a molecular-biological pair of scissors that cuts the DNA at selected sites. Several different can thus be produced at the same time in a perfectly balanced combination, which is important if they are to be crystallised or used therapeutically.

"Oligonucleotide-based drugs are already available, and it's very possible that our method could be used to produce purer and cheaper versions of these drugs," says Dr Björn Högberg.

Explore further: Self-assembling nanostructures of DNA -- a biotechnologist's dream

More information: 'Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides', Cosimo Ducani, Corinna Kaul, Martin Moche, William M. Shih, and Björn Högberg, Nature Methods, online 2 June 2013.

Related Stories

New cheaper method for mapping disease genes

May 27, 2008

Scientists at the Swedish medical university Karolinska Institutet have developed a new DNA-sequencing method that is much cheaper than those currently in use in laboratories. They hope that this new method will make it possible ...

Under-twisted DNA origami delivers cancer drugs to tumors

September 13, 2012

Scientists at Karolinska Institutet in Sweden describe in a new study how so-called DNA origami can enhance the effect of certain cytostatics used in the treatment of cancer. With the aid of modern nanotechnology, scientists ...

Fast new, one-step genetic engineering technology

May 22, 2013

A new, streamlined approach to genetic engineering drastically reduces the time and effort needed to insert new genes into bacteria, the workhorses of biotechnology, scientists are reporting. Published in the journal ACS ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.