Ocean acidification as a hearing aid for fish?

Apr 19, 2013
Ocean acidification as a hearing aid for fish?
This is micro-CT imagery of a cobia larva head that has been filtered to view the entire skull (top image) and the more dense otolith (ear stone) structures (bottom image). Similar 3-D images were used by researchers to obtain the first measurements larval fish otoliths while still inside the skull. Credit: UM/RSMAS

Ocean acidification, which occurs as CO2 is absorbed by the world's oceans, is known to negatively impact a wide variety of marine animals ranging from massive corals to microscopic plankton. However, there is much less information about how fish may be impacted by acidification, should carbon emissions continue to rise as a result of human activities.

In a new study published in the Proceedings of the National Academy of Sciences, University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science researcher Sean Bignami, along with National Oceanic and Atmospheric Administration (NOAA) scientists Ian Enochs, Derek Manzello, and UM Professors Su Sponaugle and Robert Cowen, report stunning new insight into the potential effects of acidification on the sensory function of larval cobia (Rachycentron canandum). Cobia are large tropical that are highly mobile as they mature and are popular among recreational anglers.

Bignami and the team utilized 3D X-rays (micro-CT scans) similar to what a patient might receive at a hospital to determine that fish raised in low-pH seawater, simulating future conditions, have larger and more dense otoliths (ear stones) than those from higher-pH seawater. Otoliths are distinct calcium carbonate structures within the inner ear of fishes that are used for hearing and balance. The changes resulted in up to a 58-percent increase in otolith mass, and when tested in a mathematical model of otolith function, showed a potential increase in hearing sensitivity and up to a 50-percent increase in hearing range.

This video is not supported by your browser at this time.
In a new study published in the Proceedings of the National Academy of Sciences, University of Miami researcher Sean Bignami, along with NOAA scientists Ian Enochs, Derek Manzello, and UM professors Su Sponaugle and Robert Cowen, report stunning new insight into the potential effects of acidification on the sensory function of larval cobia. The team was the first to utilize 3-D X-rays (micro-CT scans) similar to what a patient might receive at a hospital, to determine that fish raised in low-pH seawater, simulating future conditions, have larger and more dense otoliths (ear stones) than those from higher-pH seawater. Otoliths are distinct calcium carbonate structures within the inner ear of fishes that are used for hearing and balance. The changes resulted in up to a 58 percent increase in otolith mass, and when tested in a mathematical model of otolith function, showed a potential increase in hearing sensitivity and up to a 50 percent increase in hearing range. These findings indicate the potential for significant impact on a key sensory system in fish, with important implications for larval fish recruitment and fisheries replenishment. Credit: Sean Bignami - UM/RSMAS

"Increased hearing sensitivity could improve a fish's ability to use sound for navigation, predator avoidance, and communication. However, it could also increase their sensitivity to common background noises, which may disrupt the detection of more useful auditory information," said Bignami, who recently completed his PhD in Marine Biology and Fisheries at UM.

The study, a collaboration between UM and NOAA's Acidification Program at the Atlantic Oceanographic and Meteorological Laboratory in Miami, is the first to use micro-CT technology to examine otoliths while still inside the heads of the larval fish.

"This effect of represents a significant change to a key sensory system in fish. Although the ultimate ecological consequences still need to be determined, there is the potential for serious impact on important processes such as larval fish recruitment and fisheries replenishment in this species and perhaps other critical fisheries," Bignami added.

Explore further: Deep sea fish eyesight similar to human vision

More information: Bignami S, Enochs I, Manzello D, Sponaugle S, Cowen RK (2013) Ocean acidification alters the otoliths of a pan-tropical fish species with implications for sensory function. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1301365110

Related Stories

Putting larval cobia to the acid test

Apr 02, 2013

Ocean acidification, which occurs as CO2 is absorbed by the world's oceans, is a source of concern for marine scientists worldwide. Studies on coral, mollusks, and other ocean denizens are helping to paint ...

Ocean acidification leaves clownfish deaf to predators

Jun 01, 2011

(PhysOrg.com) -- Since the Industrial Revolution, over half of all the CO2 produced by burning fossil fuels has been absorbed by the ocean, making pH drop faster than any time in the last 650,000 years and ...

Recommended for you

Dogs hear our words and how we say them

Nov 26, 2014

When people hear another person talking to them, they respond not only to what is being said—those consonants and vowels strung together into words and sentences—but also to other features of that speech—the ...

Amazonian shrimps: An underwater world still unknown

Nov 26, 2014

A study reveals how little we know about the Amazonian diversity. Aiming to resolve a scientific debate about the validity of two species of freshwater shrimp described in the first half of the last century, ...

Factors that drive sexual traits

Nov 26, 2014

Many male animals have multiple displays and behaviours to attract females; and often the larger or greater the better.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.