Battery research at NSLS aims to solve energy storage challenges

Apr 08, 2013 by Chelsea Whyte
Zhong Zhong, Joshua Gallaway, and Can Erdonmez are pushing the extreme limits of alkaline batteries at beam line X17B1 at Brookhaven's National Synchrotron Light Source.

(Phys.org) —The shrinking size and increasing capacity of batteries in the past few decades has made possible devices that have transformed everyday life. But small isn't the only frontier for battery technology. As the world enters its most energy-intensive era, the search is on for bigger, cheaper and safer batteries that can capture, store, and efficiently use sustainable energy on a large scale.

To determine how best to meet those large-scale energy needs, researchers from the City University of New York (CUNY) Energy Institute at City College are probing small-scale, off-the-shelf D-cell batteries—like those you might use in a flashlight. These alkaline batteries are inexpensive and energy dense, properties that could potentially be scaled up to provide safer and cheaper grid-scale power.

The researchers are using the National (NSLS) at the U.S. Department of Energy's Brookhaven National Laboratory to test the limits of alkaline batteries. Though typically considered "single use," these alkaline batteries may have longer lifespans than previously thought before ending up tossed in the . Finding out how many actual uses we can squeeze out of these off-the-shelf batteries, along with tests of model alkaline batteries that mimic grid-scale , could feed a new revolution in inexpensive and readily available power sources that could run buildings.

It turns out that primary batteries – those sold for one-time use – will actually recharge if only a fraction of the capacity is used. In other words, these batteries are only irreversibly used up if every last electron is pulled out of them. The team is beaming high-intensity x-rays generated at the NSLS through a battery as it operates to determine just how far we can push these cheap power sources and how much of a battery's energy can be tapped while retaining the possibility for multiple uses.

"We're pinning down what that fraction is and how fast you can use up that capacity and still maintain the ability to recharge," said Joshua Gallaway, senior research associate at the CUNY Energy Institute.

There are several advantages to scaling up alkaline batteries instead of focusing on, say, the rechargeable lithium-ion batteries used in laptops and other electronics. "Alkaline batteries are safe and inexpensive. That's really at the heart of the matter," Gallaway said. "As long as you neutralized the electrolyte, you could eat everything in our battery."

The primary ingredients in these low-cost batteries, manganese and zinc, are both abundant and well distributed around the world, which is a major consideration in the pursuit of energy security for the United States. Lithium-ion batteries normally require more expensive, less readily available materials.

"You could say that the massive portable computer revolution happened because batteries got smaller and smaller. Batteries are the limiting factor," Gallaway said. This research is attempting to expand those limits by pushing in the other direction, making batteries larger, safely. Getting there would solve two big issues in energy storage for the electric grid.

One is load leveling, which aims to make electricity production more efficient by maintaining the same level of production at all times, as opposed to current practices at traditional power plants, which experience fluctuations as they follow electricity demand. The other is known as renewables firming, which pairs energy storage with some form of renewable generation, which is intermittent in nature. For example, wind power is generated mostly at night, while solar power is generated mostly during the day. Finding a way to store energy produced by these methods would allow it to be used anytime, not just at the moment of generation.

"Electricity is a product that needs a warehouse," said Brookhaven Associate Materials Scientist Can Erdonmez, a collaborator on the research. "We need a way to efficiently and safely store large amounts of energy and we need to find the limits of our batteries in terms of storage capacity and lifetime."

At NSLS, the scientists monitor changes in zinc and manganese dioxide – ingredients of standard consumer alkaline batteries – during charge and discharge.

"Charging and discharging a battery is like pumping water up a mountain and having it stream back to the bottom," he said. "You have to force water up a hill ("charging"), but on the way down, it falls freely."

As batteries charge and discharge, the chemicals that fuel their internal reactions degrade and stop supplying electrons. To get a glimpse inside the changing nature of the core of a charging battery —so as to better understand how this degradation occurs—the team is employing energy dispersive x-ray diffraction at the X17B1 beamline of NSLS.

"NSLS produces with high enough energy that they can go directly through the batteries and out the other side while they're charging and discharging," Erdonmez said.

Gallaway and Erdonmez are working with Professor Dan Steingart of Princeton to test cycleable grid-scale alkaline batteries made at the CUNY Institute headed by Distinguished Professor of Chemical Engineering Sanjoy Banerjee. This collaboration was initiated through Brookhaven under the Laboratory Directed Research and Development program with the purpose of combining the advanced characterization expertise at Brookhaven with vigorous development activities on grid-appropriate battery technologies in several academic institutions in the Northeast.

"We have parallel work going on at other beamlines where we test paper-thin model devices," Erdonmez said. "Those experiments are great for understanding the ultimate limits of the materials, but do not show the full range of behaviors possible in the relatively large volumes inside industrially produced batteries."

The structure of a battery changes as it degrades, but this doesn't happen uniformly. Quantifying these irregularities will help researchers understand how to make larger batteries last longer.

"X17B1 is really unique," he said. "The data we're taking helps us think and design for real-life systems because we can see how these materials behave in a battery pushed to its limits."

Explore further: Environmentally compatible organic solar cells

add to favorites email to friend print save as pdf

Related Stories

Battery Wrapped in Solar Cells Recharges in the Sun

Mar 02, 2009

(PhysOrg.com) -- Although you can buy solar charging devices for rechargeable batteries, it would be even more convenient if batteries had built-in solar cells. Sitting in sunlight, the battery could then ...

Novel battery system could reduce buildings' electric bills

May 08, 2012

The CUNY Energy Institute, which has been developing innovative low-cost batteries that are safe, non-toxic, and reliable with fast discharge rates and high energy densities, announced that it has built an operating prototype ...

Eos says zinc battery recipe is energy game-changer

Jan 04, 2012

(PhysOrg.com) -- Tall order in energy storage: Find the right technology that delivers the holy grail of the grid, a viable solution for energy storage (tough). A startup from Easton, Pennsylvania claims it’s ...

Recommended for you

Environmentally compatible organic solar cells

16 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Floating nuclear plants could ride out tsunamis

17 hours ago

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

17 hours ago

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

dschlink
not rated yet Apr 08, 2013
Another aspect of load leveling that is often ignored is the ability to store the power close to the point of use. This decreases the loads on the distribution network if done at low demand periods. Since winds are generally stronger at night and power demand is low, placing large batteries near cities would solve several problems.

More news stories

Simplicity is key to co-operative robots

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Microsoft CEO is driving data-culture mindset

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...