New technique developed to separate complex molecular mixtures

Feb 15, 2013
New technique developed to separate complex molecular mixtures
Professor Cooper: “The holes in these cage molecules act like a shape-selective molecular sieve, rather like a children’s wooden shape puzzle”

Chemists at the University of Liverpool have created a new technique that could be used in industry to separate complex organic chemical mixtures.

Chemical feedstocks containing are used extensively in industry to create modern materials and polymers.

Distillation techniques

Their use relies heavily on distillation techniques which separate complex mixtures into more simple molecules used as building blocks to develop drugs, plastics and new materials.  These techniques can be expensive and involve large amounts of energy for hard-to-separate mixtures.

A team of researchers at the University's Department of Chemistry, led by Professor Andrew Cooper, have created organic molecular crystals that are able to separate important organic by their molecular shape.

Professor Cooper said: "We were able to demonstrate this new molecule separation technique by synthesising porous organic cage molecules that are highly similar in shape to the molecules that need to be separated.

"Flexibility and motion"

"The holes in these cage molecules act like a shape-selective molecular sieve, rather like a children's wooden shape puzzle. Using computer simulations we revealed how the porous cages separate the aromatic feedstocks and show that, unlike a wooden shape puzzle, the mechanism actually involves flexibility and motion in the cage sieves. "

The ability to separate complex molecules using less energy will be important in the future for current petrochemical and chemical industries and for producing any next-generation sustainable bio-derived chemicals.

The findings are part of a five-year research programme in new materials discovery, and are published in Nature Chemistry.

Explore further: Recycling industrial waste water: Scientists discover a new method of producing hydrogen

More information: www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.1550.html

Related Stories

Liverpool scientists construct molecular 'knots'

Jul 20, 2010

Scientists at the University of Liverpool have constructed molecular 'knots' with dimensions of around two nanometers -- around 30,000 times smaller than the diameter of a human hair.

Flexibility: The key to carbon capture

Aug 12, 2011

From power plants that capture their own carbon dioxide emissions to vehicles powered by hydrogen, clean energy applications often demand materials that can selectively adsorb large volumes of harmful gases. ...

Building blocks of the future

Apr 06, 2010

(PhysOrg.com) -- Professor Varinder Aggarwal is no ordinary builder. He and his team in the School of Chemistry have just discovered a new technique that could hasten the development of new drugs for today’s ...

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

A beautiful, peculiar molecule

Apr 16, 2014

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Metals go from strength to strength

Apr 15, 2014

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

User comments : 0

More news stories

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...