New technique developed to separate complex molecular mixtures

Feb 15, 2013
New technique developed to separate complex molecular mixtures
Professor Cooper: “The holes in these cage molecules act like a shape-selective molecular sieve, rather like a children’s wooden shape puzzle”

Chemists at the University of Liverpool have created a new technique that could be used in industry to separate complex organic chemical mixtures.

Chemical feedstocks containing are used extensively in industry to create modern materials and polymers.

Distillation techniques

Their use relies heavily on distillation techniques which separate complex mixtures into more simple molecules used as building blocks to develop drugs, plastics and new materials.  These techniques can be expensive and involve large amounts of energy for hard-to-separate mixtures.

A team of researchers at the University's Department of Chemistry, led by Professor Andrew Cooper, have created organic molecular crystals that are able to separate important organic by their molecular shape.

Professor Cooper said: "We were able to demonstrate this new molecule separation technique by synthesising porous organic cage molecules that are highly similar in shape to the molecules that need to be separated.

"Flexibility and motion"

"The holes in these cage molecules act like a shape-selective molecular sieve, rather like a children's wooden shape puzzle. Using computer simulations we revealed how the porous cages separate the aromatic feedstocks and show that, unlike a wooden shape puzzle, the mechanism actually involves flexibility and motion in the cage sieves. "

The ability to separate complex molecules using less energy will be important in the future for current petrochemical and chemical industries and for producing any next-generation sustainable bio-derived chemicals.

The findings are part of a five-year research programme in new materials discovery, and are published in Nature Chemistry.

Explore further: Simulations for better transparent oxide layers

More information: www.nature.com/nchem/journal/v… full/nchem.1550.html

Related Stories

Liverpool scientists construct molecular 'knots'

Jul 20, 2010

Scientists at the University of Liverpool have constructed molecular 'knots' with dimensions of around two nanometers -- around 30,000 times smaller than the diameter of a human hair.

Flexibility: The key to carbon capture

Aug 12, 2011

From power plants that capture their own carbon dioxide emissions to vehicles powered by hydrogen, clean energy applications often demand materials that can selectively adsorb large volumes of harmful gases. ...

Building blocks of the future

Apr 06, 2010

(PhysOrg.com) -- Professor Varinder Aggarwal is no ordinary builder. He and his team in the School of Chemistry have just discovered a new technique that could hasten the development of new drugs for today’s ...

Recommended for you

Simulations for better transparent oxide layers

Sep 01, 2014

Touchscreens and solar cells rely on special oxide layers. However, errors in the layers' atomic structure impair not only their transparency, but also their conductivity. Using atomic models, Fraunhofer ...

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

User comments : 0