Light-emitting bioprobe fits in a single cell

Feb 13, 2013
This scanning electron microscope (SEM) image shows a nanobeam probe, including a large part of the handle tip, inserted in a typical cell. Credit: Gary Shambat, Stanford University School of Engineering

If engineers at Stanford have their way, biological research may soon be transformed by a new class of light-emitting probes small enough to be injected into individual cells without harm to the host. Welcome to biophotonics, a discipline at the confluence of engineering, biology and medicine in which light-based devices – lasers and light-emitting diodes (LEDs) – are opening up new avenues in the study and influence of living cells.

The team described their probe in a paper published online February 13 by the journal . It is the first study to demonstrate that sophisticated engineered light resonators can be inserted inside cells without damaging the cell. Even with a embedded inside, a cell is able to function, migrate and reproduce as normal.

Applications and implications

The researchers call their device a "nanobeam," because it resembles a steel I-beam with a series of round holes etched through the center. These beams, however, are not massive, but measure only a few microns in length and just a few hundred nanometers in width and thickness. It looks a bit like a piece from an erector set of old. The holes through the beams act like a nanoscale hall of mirrors, focusing and amplifying light at the center of the beam in what are known as photonic cavities. These are the building blocks for nanoscale lasers and LEDs.

"Devices like the photonic we have built are quite possibly the most diverse and customizable ingredients in ," said the paper's senior author, Jelena Vuckovic, a professor of electrical engineering. "Applications span from fundamental physics to nanolasers and that could have profound impact on biological research."

At the , a nanobeam acts like a needle able to penetrate cell walls without injury. Once inserted, the beam emits light, yielding a remarkable array of research applications and implications. While other groups have shown that it is possible to insert simple nanotubes and electrical nanowires into cells, nobody had yet realized such complicated optical components inside biological cells.

"We think this is quite a dramatic shift from existing applications and will enable expanded opportunities for understanding and influencing cellular biology," said the paper's first author Gary Shambat, a doctoral candidate in electrical engineering. Shambat works at the Nanoscale and Quantum Photonics Lab directed by Vuckovic.

Iron to a magnet

In this case, the studied cells came from a prostate tumor, indicating possible application for the probe in cancer research. The primary and most immediate use would be in the real-time sensing of specific proteins within the cells, but the probe could be adapted to sense any important biomolecules such as DNA or RNA.

This image shows a photonic nanobeam inserted in a cell. Clearly visible are the etched holes through the beam as well as the sandwich-like layer structure of the beam itself. The beam structure alternates between layers of gallium arsenide and photonic crystal containing the photon-producing quantum dots. Credit: Gary Shambat, Stanford University School of Engineering

To detect these key molecules, researchers coat the probe with certain organic molecules or antibodies that are known to attract the target proteins, just like iron to a magnet. If the desired proteins are present within the cell, they begin to accumulate on the probe and cause a slight-but-detectable shift in the wavelength of the light being emitted from the device. This shift is a positive indication that the protein is present and in what quantity.

"Let's say you have a study that is interested in whether a certain drug produces or inhibits a specific protein. Our biosensor would tell definitively if the drug was working and how well based on the color of the light from the probe. It would be quite a powerful tool," explained Sanjiv Sam Gambhir, MD, co-author of the paper and chair of the Department of Radiology at the Stanford School of Medicine as well as director of Stanford's Canary Center for Early Cancer Detection.

As such, embeddable nanoscale optical sensors would represent a key development in the quest for patient-specific cancer therapies—often referred to as personalized medicine—in which drugs are targeted to the patient based on efficacy.

A clever structure

Structurally, the new device is a sandwich of extremely thin layers of the semiconductor gallium arsenide alternated with similarly thin layers of light-emitting crystal, a sort of photonic fuel known as quantum dots. The structure is carved out of chips or wafers, much like sculptures are chiseled out of rock. Once sculpted, the devices remain tethered to the thick substrate.

Shambat and his fellow engineers have been working on similar optical devices for use in ultrafast, ultra-efficient computer applications where having devices immobilized on chips and wafers does not matter so much since they will ultimately be integrated with microelectronics.

For biological applications, however, the thick, heavy substrate presents a serious hurdle for interfacing with single-cells. The underlying and all-important nanocavities are locked in position on the rigid material and unable to penetrate cell walls.

Shambat's breakthrough came when he was able to peel away the photonic nanobeams, leaving the bulky wafer behind. He then glued the ultrathin photonic device to a fiber optic cable with which he steers the needle-like probe toward and into the cell.

Similarly, anticipating that gallium arsenide could be toxic to cells, Shambat also devised a clever way to encapsulate his devices in a thin, electrically insulating coating of alumina and zirconia. The coating serves two purposes: it both protects the cell from the potentially toxic gallium arsenide and protects the probe from degrading in the cell environment.

"Stunning" results

Once inserted in the cell, the probe emits light, which can be observed from outside. For engineers, it means that almost any current application or use of these powerful photonic devices can be translated into the previously off-limits environment of the cell interior.

In one finding that the authors describe as stunning, they loaded their nanobeams into cells and watched as the cells grew, migrated around the research environment and reproduced. Each time a cell divided, one of the daughter cells inherited the nanobeam from the parent and the beam continued to function as expected.

This inheritability frees researchers to study living cells over long periods of time, a research advantage not possible with existing detection techniques, which require cells be either dead or fixed in place.

"Our nanoscale probes can reside in cells for long periods of time, potentially providing sensor feedback or giving control signals to the cells down the road," said Shambat. "We tracked one cell for eight days. That's a long time for a single-cell study."

Explore further: In-situ nanoindentation study of phase transformation in magnetic shape memory alloys

More information: pubs.acs.org/doi/abs/10.1021/nl304602d

Related Stories

Recommended for you

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

nanotech_republika_pl
not rated yet Feb 13, 2013
I'm thinking about a device in a gut with this i-beam stuck into an enterocyte. This device would have to read the change in color and then send the info back outside of the animal body to the computer. The device might be on the order of 100 micrometers? Or, that small device can be placed also in a connective tissue of skin and have this i-beam stuck in a fibroblast.
Modernmystic
3.3 / 5 (3) Feb 13, 2013
I hope I live to see mature nanotech. All these developments are exciting and accelerating, but we're still just at the beginning of the coming revolution. Nanotechnology will change civilization more than agricultural, industrial, and the information revolutions combined.
Telekinetic
3.7 / 5 (3) Feb 13, 2013
I hope to live to see the Disco era make a comeback, then I can blink to the music on the dance floor.

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.