Related topics: light

A single-photon source you can make with household bleach

Quantum computing and quantum cryptography are expected to give much higher capabilities than their classical counterparts. For example, the computation power in a quantum system may grow at a double exponential rate instead ...

Evidence found for cloaked black hole in early universe

A group of astronomers, including Penn State scientists, has announced the likely discovery of a highly obscured black hole existing only 850 million years after the Big Bang, using NASA's Chandra X-ray Observatory. This ...

Heterostructure crystals could light the way to optical circuits

It may be possible to reach new levels of miniaturization, speed, and data processing with optical quantum computers, which use light to carry information. For this, we need materials that can absorb and transmit photons. ...

The mechanism for gamma-ray bursts from space is decoded

Gamma-ray bursts, short and intense flashes of energetic radiation coming from outer space, are the brightest explosions in the universe. As gamma rays are blocked by the atmosphere, the bursts were discovered accidentally ...

page 1 from 23

Photonics

The science of photonics includes the generation, emission, transmission, modulation, signal processing, switching, amplification, detection and sensing of light. The term photonics thereby emphasizes that photons are neither particles nor waves — they are different in that they have both particle and wave nature. It covers all technical applications of light over the whole spectrum from ultraviolet over the visible to the near-, mid- and far-infrared. Most applications, however, are in the range of the visible and near infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

This text uses material from Wikipedia, licensed under CC BY-SA