High-conductivity material demonstrates role of oxygen ions in enhancing their capabilities

Feb 27, 2013

Yttria stabilized zirconia, also known as YSZ, is a material of great interest because of its relatively high oxygen-ion based conductivity. In particular, it finds applications in electrochemical devices, such as solid oxide fuel cells and oxygen sensors. In a study published in European Physical Journal B, Kia Ngai, from the University of Pisa in Italy, and colleagues from the Complutense University in Madrid, Spain, devised a model of the oxygen-ion dynamics that contribute to the conductivity of YSZ.

The problem is that fuel cells currently operate above 700 ºC, which strongly limits their use. Understanding oxygen-ion diffusion is key to helping lower operating temperature down to room temperature. Previous attempts to do so were done with the so-called coupling model (CM), describing simple physical concepts related to ion-ion interaction. This helped uncover the importance of ion-ion correlation in limiting long-range ion mobility, and thus conductivity.

The trouble is that experiments show that ionic conductivity in YSZ requires an activation energy that is much higher than that supplied by describing independent ion hopping. Relying on the CM model, the authors first established a quantitative description of the ion dynamics in YSZ. Then they compared the predictions of the CM with experimental results and with simulations, particularly those of nanometric-scale thin films, published in the last ten years.

Thus, in their model, they established the connection between the level of the energy barrier for independent ion-hopping simulations and the level of activation energy measured experimentally for long-range movement of . In addition, they attributed an increase of the conductivity in nanometers-thick YSZ films to a decrease in the ion-ion correlations. This model could also be used to study the conductivity relaxation of so-called molten, glassy and crystalline ionic conductors and ambient temperature .

Explore further: Researchers develop method of fabricating perovskite solar cells that is more efficient, costs less

More information: Ngai K.L., Santamaria J. and Leon C. (2013), Dynamics of interacting oxygen ions in yttria stabilized zirconia: bulk material and nanometer thin films, European Physical Journal B, DOI: 10.1140/epjb/e2012-30737-2

Related Stories

Tunable plastic thermometers

Dec 15, 2010

(PhysOrg.com) -- Researchers at the Universities of Queensland and New South Wales in Australia have discovered that the ability of a plastic to conduct electricity can be tuned by exposure to an ion beam. ...

Recommended for you

The monopoly of aluminium is broken

13 hours ago

Discovering Majorana's was only the first step, but utilizing it as a quantum bit (qubit) still remains a major challenge. An important step towards this goal has just been taken, as shown by researchers ...

Defining a national standard for dynamic pressure waves

20 hours ago

In recent years, the physical damage done by pressure waves – such as traumatic brain injuries from explosives sustained by military personnel in the Middle East – has become an increasingly urgent public ...

Shedding light on untapped information in photons

21 hours ago

Conventional optical imaging systems today largely limit themselves to the measurement of light intensity, providing two-dimensional renderings of three-dimensional scenes and ignoring significant amounts ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.