Ancient teeth bacteria record disease evolution

February 17, 2013

DNA preserved in calcified bacteria on the teeth of ancient human skeletons has shed light on the health consequences of the evolving diet and behaviour from the Stone Age to the modern day.

The ancient genetic record reveals the negative changes in oral brought about by the dietary shifts as humans became farmers, and later with the introduction of food manufacturing in the Industrial Revolution.

An international team, led by the University of Adelaide's Centre for Ancient DNA (ACAD) where the research was performed, has published the results in . Other team members include the Department of Archaeology at the University of Aberdeen and the Wellcome Trust Sanger Institute in Cambridge (UK).

"This is the first record of how our evolution over the last 7500 years has impacted the bacteria we carry with us, and the important health consequences," says study leader Professor Alan Cooper, ACAD Director.

"Oral bacteria in modern man are markedly less diverse than historic populations and this is thought to contribute to chronic oral and other disease in post-industrial lifestyles."

The researchers extracted DNA from tartar (calcified dental plaque) from 34 prehistoric northern European , and traced changes in the nature of oral bacteria from the last hunter-gatherers, through the first farmers to the Bronze Age and Medieval times.

" represents the only easily accessible source of preserved human bacteria," says lead author Dr Christina Adler, who conducted the research while a PhD student at the University of Adelaide, now at the University of Sydney.

"Genetic analysis of plaque can create a powerful new record of dietary impacts, health changes and oral pathogen genomic evolution, deep into the past."

Professor Cooper says: "The composition of oral bacteria changed markedly with the introduction of farming, and again around 150 years ago. With the introduction of processed sugar and flour in the Industrial Revolution, we can see a dramatically decreased diversity in our , allowing domination by caries-causing strains. The modern mouth basically exists in a permanent disease state."

Professor Cooper has been working on the project with archaeologist and co-Leader Professor Keith Dobney, now at the University of Aberdeen, for the past 17 years. Professor Dobney says "I had shown tartar deposits commonly found on ancient teeth were dense masses of solid calcified bacteria and food, but couldn't identify the species of bacteria. was the obvious answer."

However, the team was not able to sufficiently control background levels of bacterial contamination until 2007 when ACAD's ultra-clean laboratories and strict decontamination and authentication protocols became available. The research team is now expanding its studies through time, and around the world, including other species such as Neandertals.

Explore further: Team examines how to rapily assess children's tooth decay risk

Related Stories

DNA reveals origins of first European farmers

November 9, 2010

A team of international researchers led by ancient DNA experts from the University of Adelaide has resolved the longstanding issue of the origins of the people who introduced farming to Europe some 8000 years ago.

Recommended for you

Early human diet explains our eating habits

August 31, 2015

Much attention is being given to what people ate in the distant past as a guide to what we should eat today. Advocates of the claimed palaeodiet recommend that we should avoid carbohydrates and load our plates with red meat ...

Just how good (or bad) is the fossil record of dinosaurs?

August 28, 2015

Everyone is excited by discoveries of new dinosaurs – or indeed any new fossil species. But a key question for palaeontologists is 'just how good is the fossil record?' Do we know fifty per cent of the species of dinosaurs ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.