Related topics: dna sequences

Jurassic Park: Why we're still struggling to realize it 30 years on

"Jurassic Park" is arguably the ultimate Hollywood blockbuster. Aside from the appeal of human-chomping dinosaurs, tense action sequences and ground-breaking cinematography, its release in 1993 was a movies-meet-science milestone.

page 1 from 29

Ancient DNA

Ancient DNA can be loosely described as any DNA recovered from biological samples that have not been preserved specifically for later DNA analyses. Examples include the analysis of DNA recovered from archaeological and historical skeletal material, mummified tissues, archival collections of non-frozen medical specimens, preserved plant remains, ice and permafrost cores, Holocene plankton in marine and lake sediments, and so on. Unlike modern genetic analyses, ancient DNA studies are characterised by low quality DNA. This places limits on what analyses can achieve. Furthermore, due to degradation of the DNA molecules, a process which correlates loosely with factors such as time, temperature and presence of free water, upper limits exist beyond which no DNA is deemed likely to survive. Current estimates suggest that in optimal environments, i.e environments which are very cold, such as permafrost or ice, an upper limit of max 1 Million years exists. As such, early studies that reported recovery of much older DNA, for example, from Cretaceous dinosaur remains, have been proven to be wrong, with results stemming from sample or extract contamination, as opposed to authentic extracted DNA.

This text uses material from Wikipedia, licensed under CC BY-SA