DNA reveals origins of first European farmers

November 9, 2010
An artist's impression of a Neolithic farmer. Image by Karol Schauer, LDA Sachsen-Anhalt.

A team of international researchers led by ancient DNA experts from the University of Adelaide has resolved the longstanding issue of the origins of the people who introduced farming to Europe some 8000 years ago.

A detailed genetic study of one of the first farming communities in Europe, from central Germany, reveals marked similarities with populations living in the Ancient Near East (modern-day Turkey, Iraq and other countries) rather than those from Europe.

Project leader Professor Alan Cooper, Director of the Australian Centre for Ancient DNA (ACAD) at the University of Adelaide, says: "This overturns current thinking, which accepts that the first European farming populations were constructed largely from existing populations of hunter-gatherers, who had either rapidly learned to or interbred with the invaders."

The results of the study have been published today in the online peer-reviewed science journal PLoS Biology.

"We have finally resolved the question of who the first farmers in Europe were – invaders with revolutionary new ideas, rather than populations of Stone Age hunter-gatherers who already existed in the area," says lead author Dr Wolfgang Haak, Senior Research Associate with ACAD at the University of Adelaide.

"We've been able to apply new, high-precision ancient DNA methods to create a detailed genetic picture of this ancient farming population, and reveal that it was radically different to the nomadic populations already present in Europe.

"We have also been able to use genetic signatures to identify a potential route from the Near East and Anatolia, where farming evolved around 11,000 years ago, via south-eastern Europe and the Carpathian Basin (today's Hungary) into Central Europe," Dr Haak says.

The project involved researchers from the University of Mainz and State Heritage Museum in Halle, Germany, the Russian Academy of Sciences and members of the National Geographic Society's Genographic Project, of which Professor Cooper is a Principal Investigator and Dr Haak is a Senior Research Associate.

The used in this study comes from a complete graveyard of Early Neolithic unearthed at the town of Derenburg in Saxony-Anhalt, central Germany.

"This work was only possible due to the close collaboration of archaeologists excavating the skeletons, to ensure that no modern human DNA contaminated the remains, and nicely illustrates the potential when archaeology and genetics are combined," says Professor Kurt Werner Alt from the collaborating Institute of Anthropology in Mainz, Germany.

Explore further: Europe's first farmers replaced their Stone Age hunter-gatherer forerunners

Related Stories

Ancient bison genetic treasure trove for farmers

October 20, 2009

(PhysOrg.com) -- Genetic information from an extinct species of bison preserved in permafrost for thousands of years could help improve modern agricultural livestock and breeding programs, according to University of Adelaide ...

DNA study sheds new light on horse evolution

December 10, 2009

(PhysOrg.com) -- Ancient DNA retrieved from extinct horse species from around the world has challenged one of the textbook examples of evolution - the fossil record of the horse family Equidae over the past 55 million years.

Recommended for you

Knowledge gap on the origin of sex

May 26, 2017

There are significant gaps in our knowledge on the evolution of sex, according to a research review on sex chromosomes from Lund University in Sweden. Even after more than a century of study, researchers do not know enough ...

The high cost of communication among social bees

May 26, 2017

(Phys.org)—Eusocial insects are predominantly dependent on chemosensory communication to coordinate social organization and define group membership. As the social complexity of a species increases, individual members require ...

Why communication is vital—even among plants and funghi

May 26, 2017

Plant scientists at the University of Cambridge have found a plant protein indispensable for communication early in the formation of symbiosis - the mutually beneficial relationship between plants and fungi. Symbiosis significantly ...

Darwin was right: Females prefer sex with good listeners

May 26, 2017

Almost 150 years after Charles Darwin first proposed a little-known prediction from his theory of sexual selection, researchers have found that male moths with larger antennae are better at detecting female signals.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.