Stem cell materials could boost research into key diseases

Jan 08, 2013

Stem cell manufacturing for drug screening and treatments for diseases such as Huntington's and Parkinson's could be boosted by a new method of generating stem cells, a study suggests.

Scientists have developed a family of compounds that can support the growth of human on a large scale for use in drug testing or treatments.

The new materials, which are water-based gels, act as a tiny to which cells can cling as they grow. Normally cells must be grown on expensive biological surfaces that can carry pathogens and contaminate cells.

Once cells have multiplied sufficiently for their intended purpose, the gels can be cooled, enabling the stem cells to drop off the scaffold without becoming damaged.

The new approach surpasses existing techniques of separating cells by mechanical or chemical means, which carry a greater risk of damage to cells.

Scientists say the materials could offer a means of enabling the stem cells to be produced in large numbers efficiently and without the risk of inadvertent contamination, facilitating research, programmes and clinical applications that call for large numbers of cells.

Researchers at the University of Edinburgh developed the by screening hundreds of potential compounds for their ability to support stem cell growth. From a shortlist of four, one has been found to be effective, and researchers say the remaining three show similar potential.

Stem cells provide a powerful tool for screening drugs as they can be used to show the effects of drugs on cells and systems within the body.

The study, published in Nature Communications, was supported by the European Union Framework 7 Grant Funding. The gels are being developed under licence by technology company Ilika.

Dr Paul de Sousa, of the University of Edinburgh's Scottish Centre for , said: "This development could greatly enhance automated production of embryonic stem cells, which would improve the efficiency and reduce the cost of stem cell manufacturing. We are also looking into whether this work could help develop pluripotent stem cells induced from adult cells."

Explore further: Sculpting a cell's backside: New protein found to help cells move from behind

Related Stories

Sorting stem cells

Jan 03, 2013

When an embryonic stem cell is in the first stage of its development it has the potential to grow into any type of cell in the body, a state scientists call undifferentiated.

New way to weed out problem stem cells, making therapy safer

Sep 27, 2012

Mayo Clinic researchers have found a way to detect and eliminate potentially troublemaking stem cells to make stem cell therapy safer. Induced Pluripotent Stem cells, also known as iPS cells, are bioengineered from adult ...

Scientists isolate cancer stem cells

Sep 11, 2008

After years of working toward this goal, scientists at the OU Cancer Institute have found a way to isolate cancer stem cells in tumors so they can target the cells and kill them, keeping cancer from returning.

Recommended for you

C. difficile needs iron, but too much is hazardous

9 hours ago

Those bacteria that require iron walk a tightrope. Iron is essential for their growth, but too much iron can damage DNA and enzymes through oxidation. Therefore, bacteria have machinery to maintain their ...

Researchers discover strong break on cell division

9 hours ago

The protein complex SWI/SNF that loosens tightly wrapped up DNA is also a strong inhibitor of cell division, at the time that cells take on specialized functions. Professor Sander van den Heuvel and PhD researcher ...

A checkpoint enzyme for flawless cell division

9 hours ago

The error-free distribution of genetic material during cell division is important for preventing the development of tumor cells. Prof. Erich Nigg's research group at the Biozentrum, University of Basel, has ...

Together bacteria invade antibiotic landscapes

10 hours ago

Antibiotics kill bacteria – or at least they are supposed to, although unfortunately this does not always result in a cure. Scientists at TU Delft's Kavli Institute of Nanoscience have discovered that bacteria ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.