Sorting stem cells

When an embryonic stem cell is in the first stage of its development it has the potential to grow into any type of cell in the body, a state scientists call undifferentiated.

A team of researchers from Scotland has now demonstrated a way to easily distinguish undifferentiated from later-stage stem cells whose fate is sealed. The results are published in the ' (AIP) journal Biomicrofluidics.

The researchers used an electric field to pull stem cells through a fluid in a process called dielectrophoresis. They varied the frequency of the voltage used to generate the electric field and studied how the cells moved, a response that was affected by the cell's .

The researchers found that differentiated stem cells could store a significantly greater charge on their , a characteristic that might be used to effectively identify and separate them from undifferentiated cells.

The researchers write that the wrinkling, folding, and thinning of a cell's membrane as it differentiates may explain why the later-stage cells can store more charge. The sorting method may prove useful in separating cells for biomedical research or ultimately for treatments of diseases such as Parkinson's.


Explore further

European researchers crack embryonic stem cells mystery

More information: "Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives" is published in the journal Biomicrofluidics: bmf.aip.org/resource/1/biomgb/v6/i4/p044113_s1
Journal information: Biomicrofluidics

Citation: Sorting stem cells (2013, January 3) retrieved 18 August 2019 from https://phys.org/news/2013-01-stem-cells.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more