Identifying all factors modulating gene expression is actually possible

Jan 31, 2013

It was in trying to answer a question related to the functioning of our biological clock that a team lead by Ueli Schibler, a professor at the University of Geneva (UNIGE), Switzerland, has developed a method whose applications are proving to be countless. The researchers wanted to understand how 'timed' signals, present in the blood and controlled by our central clock, located in the brain, act on peripheral organs.

In order to identify gene activator proteins, called , involved in this process, they have developed an original called Synthetic Tandem Repeat PROMoter (STAR-PROM) screening. The biologists thus discovered that the transcription factor called serum response factor (SRF) is activated by the daily variations of a blood signal, resulting in significant changes in the structure and size of throughout the course of the day. This work, conducted in collaboration with the CHUV in Lausanne and the London Research Institute, is published in the journal Cell.

The of mammals is made up of a principal "" located in the brain, and local oscillators, present in almost all cells. In order for the many functions of our body to be able to fluctuate on a regular basis throughout the course of the day and to maintain with each other, the central clock periodically synchronizes the peripheral by using various signals.

"Our organs always know what time it is. We want to understand how the they receive through the blood are detected and translated in the cells," explains Ueli Schibler, professor in the Department of in the Faculty of Science at UNIGE. It is already known that systemic signals, produced in a rhythmic fashion in the blood and controlled by the central clock, can stimulate transcription factors in . Each of these proteins binds to specific of the gene it will activate, in a region called the "promoter".

Synthetic promoters produce luminescent signals

Ueli Schibler has a keen interest in the regulation of circadian clocks in peripheral cells. In order to identify the transcription factors solicited in these cells and understand how they function, the researcher's team has developed an original method. "We've built a library of about 850 promoters, having unique characteristics and luminescence markers. Each of these DNA sequences was inserted into a human cell line, before incubating the cells with human plasma collected at different times of the day," reports Alan Gerber, post-doctoral researcher with the National Center of Competence in Research (NCCR) Frontiers in Genetics and first author of the article.

The biologists thus discovered that daily variations of a plasma signal cyclically stimulate a transcription factor called serum response factor (SRF). SRF activates many genes and is involved in various key processes in cells. Its absence in skin is associated with psoriasis and other skin diseases. "SRF is added to the list of circadian transcription factors. We have also demonstrated that it is solicited in an antiphasic manner in humans and rats, a fact that is linked to their activity, diurnal and nocturnal respectively," says the scientist.

The cells get larger during the day

"We were very surprised to observe that the liver cells of rodents change their structure during the day, with an average size increase of about 50 percent at the end of the night. SRF activation is accompanied by a remodelling of the cellular "skeleton", resulting in morphological change in cells based on their activity. Previously, it was thought that the cytoskeleton was rather stable, and yet it changes greatly following a circadian rhythm," explains Ueli Schibler.

The screening technique developed by the researchers, called Synthetic Tandem Repeat PROMoter (STAR-PROM), is a pioneering technology: "The 850 or so elements constituting this library, constructed and screened in a year and a half, should allow us to identify the majority of factors modulating gene expression in a particular context," says Alan Gerber. Whether in the context of drug treatment, the exploration of a specific signalling pathway, the identification of new regulators, with any stimulus, the applications of this technique are countless.

Explore further: Tarantula toxin is used to report on electrical activity in live cells

add to favorites email to friend print save as pdf

Related Stories

How does body temperature reset the biological clock?

Aug 23, 2012

Numerous processes in our body fluctuate in a regular pattern during the day. These circadian (or daily) variations can be driven by local oscillators present within our cells or by systemic signals controlled by the master ...

MicroRNAs grease the cell's circadian clockwork

May 31, 2009

Most of our cells possess an internal clock, a group of genes displaying a cyclic expression pattern that reaches a peak once a day. A large number of circadian genes are expressed by organs such as the liver, whose activity ...

Recommended for you

Scientists see how plants optimize their repair

9 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

Structure of an iron-transport protein revealed

15 hours ago

For the first time, the three dimensional structure of the protein that is essential for iron import into cells, has been elucidated. Biochemists of the University of Zurich have paved the way towards a better ...

Over-organizing repair cells set the stage for fibrosis

16 hours ago

The excessive activity of repair cells in the early stages of tissue recovery sets the stage for fibrosis by priming the activation of an important growth factor, according to a study in The Journal of Ce ...

User comments : 0