Living cells behave like fluid-filled sponges

January 7, 2013

Animal cells behave like fluid-filled sponges in response to being mechanically deformed according to new research published today in Nature Materials.

Scientists from the London Centre for Nanotechnology (LCN) at UCL have shown that behave according to the theory of 'poroelasticity' when mechanically stimulated in a way similar to that experienced in organs within the body. The results indicate that the rate of cell deformation in response to is limited by how quickly water can redistribute within the cell interior.

Poroelasticity was originally formulated to describe the behaviour of water-saturated soils and has important applications in the fields of rock engineering and petro-physics. It is commonly used in the . Poroelastic models describe cells as being analogous to fluid-filled sponges. Indeed, cells are constituted of a sponge-like porous elastic matrix (comprising the cytoskeleton, organelles, and macromolecules) bathed in an interstitial fluid (the ).

In this analogy, the rate at which the fluid-filled sponge can be deformed is limited by how fast internal water can redistribute within the sponge in response to deformation. This rate is dictated by three parameters: the stiffness of the sponge matrix, the size of the pores within the sponge matrix, and the viscosity of the interstitial fluid.

To study , LCN scientists used cell-sized levers to apply rapid well-controlled on the cell surface and monitored the temporal response of cells to these deformations. Close examination of the experimental results revealed that the rate of cellular deformation was limited by how rapidly water could redistribute within the . Experimental measurements indicated that this sponge-like behaviour of cells likely occurs during normal function of organs such as the lungs and the cardiovascular system.

Emad Moeendarbary, lead author of the paper from the LCN said: "In the cardiovascular system, some tissues encounter extreme mechanical conditions. Heart valves can typically withstand 7-fold increases in their length in less than one second. The poroelastic nature of cells may allow them to behave similarly to shock absorbers when exposed to these extreme mechanical conditions."

To experimentally verify the fluid-filled sponge model, researchers manipulated the size of the cellular pores using chemical and genetic tools and showed that the rate of cellular deformation was affected by the pore size, as suggested by the theory of poroelasticity.

Guillaume Charras, senior co-author of the paper from the LCN said: "Cells can detect the mechanical forces they are subjected to and modify their behaviour accordingly. How changes in the mechanical environment are converted into biochemical information that the cell can interpret remains unknown. A better understanding of the physics of the cellular material is a first step towards formulating possible mechanisms through which this could occur."

Explore further: New research touches a nerve

More information: 'They cytoplasm of living cells behaves as a poroelastic model' is published in the journal Nature Materials on January 6, 2013.

Related Stories

New research touches a nerve

August 20, 2008

University of Queensland researchers have traced the origins of one of the most important steps in animal evolution – the development of nerves.

Make or break for cellular tissues

May 16, 2012

In a study about to be published in the European Physical Journal E, French physicists from the Curie Institute in Paris have demonstrated that the behaviour of a thin layer of cells in contact with an unfavourable substrate ...

Giraffes are living proof that cells' pressure matters

July 3, 2012

Physicists from the Curie Institute, France, explored the relative impact of the mechanical pressure induced by dividing cells in biological tissues. This approach complements traditional studies on genetic and biochemical ...

Recommended for you

Chemists solve major piece of cellular mystery

August 27, 2015

Not just anything is allowed to enter the nucleus, the heart of eukaryotic cells where, among other things, genetic information is stored. A double membrane, called the nuclear envelope, serves as a wall, protecting the contents ...

Study reveals how nanochannels select potassium ions

August 25, 2015

(Phys.org)—One of the mysteries in biology is how cells can selectively diffuse potassium across a membrane. Biological systems rely on a delicate balance between these potassium and sodium ion concentrations in the surrounding ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.