The secret of nanoparticle packing in cement

Dec 20, 2012

Cement production is responsible for 5% of carbon dioxide emissions. If we are to invent a "green" cement, we need to understand in more detail the legendary qualities of traditional Portland cement. A research group partly financed by the Swiss National Science Foundation (SNSF) is tackling this task.

Discovering the perfect composition of Portland , the most common type of cement, was the result of years of experience as well as repeated trials and errors. Emanuela Del Gado, SNSF professor at the Institute for Building Materials of the ETH Zurich, explains that its success is the result of two key factors: its legendary hardness and the availability of its constituent elements.

5% of carbon dioxide emissions

The flipside of the coin: its production requires burning calcium carbonate. This process is responsible for approximately 5% of all or the equivalent of the entire 2007 emissions of India. But a more sustainable recipe for cement has to meet high standards both in terms of material hardness and accessibility to raw materials.

Because of the massive of , various research groups worldwide are trying to understand why the mixture of this powder and water sets to such hardness.

Different densities at the nano level

Researchers of the Massachussetts Institute of Technology (MIT) have concentrated on studying the behaviour of concrete at the nano level. In their experiments, they used an instrument capable of applying at the sub-micro level. As a result, they were able to show that densities vary strongly from one measuring point to the other at this scale. But they were not able to explain why.

This is where physicist Emanuela Del Gado enters the scene. She takes a special interest in whose constituents combine in a disorderly manner. Her studies of such materials focus on the nano level. "It is at this level and not at the that certain material properties are revealed. This also applies to hydrated calcium silicate, a major component of cement which plays an important role in the setting process," she explains.

Packing particles of different sizes

The researchers first developed a packing model of hydrated calcium silicate nanoparticles. They then devised a method for observing their precipitation based on numerical simulations. This approach has proven successful (*). "We were able to show that the different densities on the nano scale can be explained by the packing of nanoparticles of varying sizes. At this crucial level, the result is greater material hardness than if the particles were of the same size and it corresponds to the established knowledge that, at macroscopic level, aggregates of different sizes form a harder concrete."

Until today, all attempts to reduce or partially replace burnt in the production of cement have resulted in less material hardness. By gaining a better understanding of the mechanisms at the nano level, it is possible to identify physical and chemical parameters and to improve the carbon footprint of concrete without reducing its hardness.

Explore further: Building the ideal rest stop for protons

More information: E. Masoero, E. Del Gado, R. J.-M. Pellenq, F.-J. Ulm, and S. Yip (2012). Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing. Physical Review Letters. DOI: 10.1103/PhysRevLett.109.155503

add to favorites email to friend print save as pdf

Related Stories

Novel experiments on cement yield concrete results

Apr 02, 2007

Using a brace of the most modern tools of materials research, a team from the National Institute of Standards and Technology and Northwestern University has shed new light on one of mankind’s older construction materials—cement.

Greener cement offers concrete environmental benefits

Dec 03, 2010

From the Roman aqueducts to the Empire State Building, concrete is the most common manmade building material on the planet. It’s also one of the largest sources of industrial emissions: the red-hot kilns used to make ...

Recipe for success: Recycled glass and cement

Feb 21, 2012

(PhysOrg.com) -- Michigan State University researchers have found that by mixing ground waste glass into the cement that is used to make concrete, the concrete is stronger, more durable and more resistant ...

Recommended for you

Building the ideal rest stop for protons

10 hours ago

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

11 hours ago

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0