Clean air: New paints break down nitrogen oxides

Dec 20, 2012
This shows the calibration of the teststand for coatings. Credit: Wolfram Scheible/Fraunhofer

Surfaces with photo-catalytic characteristics clean the air off nitrogen oxides and other health-endangering substances. Using a new test procedure, Fraunhofer researchers can find out how the coatings behave during a long-term test. They will introduce the test at the booth of the Fraunhofer Building Innovation Alliance in Booth 131 / 135 in Hall C2 at the Trade Fair BAU that will take place from Jan. 14 - 19, 2013, in Munich, Germany.

The Seventies: Smog alert in the Ruhr area, , dying in the Bavarian Forest. In those days, the solution was filter systems for the in the Ruhr area. Today, people in the urban areas are suffering from high levels of pollution that is being caused by, among other things, automotive traffic. Particularly undesired: the (NOX). In the meantime, the European Union tightened the limit values even further; in many communities they are being exceeded. Michael Hüben of the Fraunhofer Institute for and Applied Ecology IME in Schmallenberg, Germany, knows that "on stretches with there is a particular need for action." During the next two years, the Fraunhofer researchers want to examine in the project "Effectiveness of photo-catalytic removal of nitrogen oxide on coated building test panels" how photo- contribute to the removal of NOx and how the coatings prove themselves during long-term operation. On behalf of the German Federal Ministry of Transport, the German Federal Highway Research Institute is sponsoring and supporting the project. The process will be introduced at the 2013 BAU at the joint booth of the Fraunhofer Building Innovation Alliance.

"Coatings that are photo-catalytically active can help to reduce nitrogen oxides," explains Dr. Michael Hüben, "There are already a number of products available for the photo-catalytic coating of surfaces, but the standardized according to ISO 22197-1 cannot be applied to all problems. At the IME, we have now developed a special measurement cell which we are using in our project." At the A 4 interstate at Bergisch Gladbach, we will shortly be setting out weathering noise barrier samples that were coated with reactive material. Prepared test samples will be measured at predetermined intervals in the measuring cell. Hüben explains the set-up of the test: "The surface of the test sample must be photo-catalytically active, meaning it removes NOx when exposed to light." The surfaces contain titanium dioxide catalysts, a material that is affordable and available in large quantities. Then, exposed to daylight, titanium dioxide catalyzes the nitrogen oxide into nitrate. "The photo-catalytic activities of the samples are determined using a flow-through process," says the scientist. During the next two years, the experts will determine regularly how much nitrous oxide is being removed. In this manner, they will obtain a solid basis for the long term effects of the coatings. Only then will we be sure that the coatings really do help and that larger surfaces, such as entire housing tracts, can be economically furnished with coats that are photo-catalytically effective. This would make it possible to reduce the particle pollution in urban areas.

"Another area of application for the measurement process are interior rooms. Here, too, there are products commercially available that promise to improve air quality in interior rooms," explains Mr. Hüben's colleague, Frank Neumann from the Fraunhofer Institute for Surface Engineering and Thin Films IST. "Here, too, experimental measurements help us to work up standards and certifications and standardize existing test processes." At the Trade Fair BAU 2013, the researchers will present these and more photo-catalytic applications for the interior and exterior, using a stylized house in the booth of the Fraunhofer Building Innovation Alliance. The motto is: CITY OF TOMORROW - Intelligent Building for the City of the Future.

Explore further: Printing the metals of the future

add to favorites email to friend print save as pdf

Related Stories

Paving slabs that clean the air

Aug 11, 2010

The concentrations of toxic nitrogen oxide that are present in German cities regularly exceed the maximum permitted levels. That’s now about to change, as innovative paving slabs that will help protect the ...

Cleaning with sunlight

Jul 03, 2012

The sun breaks through the clouds – and surfaces start cleaning themselves! It may sound like magic, but in fact it’s all thanks to the addition of titanium dioxide molecules. Activated by UV light, ...

Cost-effective titanium forming

Oct 16, 2012

Titanium is a material that offers excellent properties; however, it is costly and time-consuming to form. Fraunhofer researchers are now giving this multi-purpose metal another chance.

Recommended for you

Printing the metals of the future

15 hours ago

3-D printers can create all kinds of things, from eyeglasses to implantable medical devices, straight from a computer model and without the need for molds. But for making spacecraft, engineers sometimes need ...

3D printing helps designers build a better brick

17 hours ago

Using 3-D printing and advanced geometry, a team at Cornell has developed a new kind of building material – interlocking ceramic bricks that are lightweight, need no mortar and make efficient use of materials.

User comments : 0