Invisibility cloaking to shield floating objects from waves

Nov 19, 2012

A new approach to invisibility cloaking may one day be used at sea to shield floating objects – such as oil rigs and ships – from rough waves. Unlike most other cloaking techniques that rely on transformation optics, this one is based on the influence of the ocean floor's topography on the various "layers" of ocean water.

At the American Physical Society's (APS) Division of Fluid Dynamics (DFD) meeting, being held November 18-20, 2012, in San Diego, Calif., Reza Alam, assistant professor of mechanical engineering at the University of California, Berkeley, will describe how the variation of density in can be used to cloak floating objects against incident .

"The density of water in an ocean or sea typically isn't constant, mainly because of variations in temperature and salinity," explains Alam. " heats the upper layer of the water, and the flow of rivers and the melting of ice lowers the water density near the surface. Over time, these effects add up to form a stable density stratification of two layers – with the lighter fluid layer on top and the more dense fluid layer below it."

Stratified waters, much like regular surface waves, contain "," which are that propagate between the two layers of water. For the same frequency of oscillation, however, internal waves travel at a much shorter wavelength and slower speed than surface waves.

Both wave types "feel" the ocean floor's influence, which generates an .

Zeroing in on this energy transfer, Alam used to transform a surface wave into internal wave as it approaches an object – meaning that the wave will pass beneath the object rather than crashing into it. And once the internal wave moves beyond the object, it can be transformed back into a surface wave.

This would be achieved by creating "corrugations" or wavy ripples that are tuned to a specific wavelength on the ocean floor in front of the floating object to be cloaked.

"Cloaking in seas by modifying the floor may play a role in protecting near-shore or offshore structures and in creating shelter for fishermen during storms," says Alam. "In reverse, it can cause the disappearance and reappearance of surface waves in areas where sandbars or any other appreciable bottom variations exist."

Explore further: Hide and seek: Sterile neutrinos remain elusive

More information: meeting.aps.org/Meeting/DFD12/APS_epitome

Related Stories

Langmuir circulation inhibits near-surface water turbulence

Jun 18, 2012

In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed ...

Scientists discover new water waves

Jul 19, 2011

(PhysOrg.com) -- By precisely shaking a container of shallow water, researchers have observed wave behavior that has never been seen before. In a new study, Jean Rajchenbach, Alphonse Leroux, and Didier Clamond ...

New invisibility cloak hides objects from human view

Jul 27, 2011

For the first time, scientists have devised an invisibility cloak material that hides objects from detection using light that is visible to humans. The new device is a leap forward in cloaking materials, according to a report ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

11 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

16 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

19 hours ago

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Caliban
4 / 5 (2) Nov 20, 2012
Well, then --I just hope that this corrugated artificial seafloor can be continuously mechanically modified to remain tuned with the variable nature of both of the two "stable density layers". It would be a real shame if, for instance, the passage of a storm added enough fresh water or its wind caused enough vertical mixing to de-stabilize them. The consequences could be disastrous.

Certainly, I could be wrong, but I see very little real-world application for this in the manner presented.

It seems to me that the researchers might be fishing for interest from another quarter altogether...