Study shows clathrin protein moonlights, playing key role in cell division

September 6, 2012

A protein called "clathrin," which is found in every human cell and plays a critical role in transporting materials within them, also plays a key role in cell division, according to new research at the University of California, San Francisco.

The discovery, featured on the cover of the in August, sheds light on the process of cell division and provides a new angle for understanding cancer. Without clathrin, cells divide erratically and unevenly—a phenomenon that is one of the hallmarks of the disease.

"Clathrin is doing more than we thought it was doing," said Frances Brodsky, DPhil, who led the research. Brodsky is a professor in the UCSF Department of and Therapeutic Sciences, a joint department of the Schools of Pharmacy and Medicine, and she holds joint appointments in Microbiology and Immunology, as well as .

A Protein Essential for Transportation in More Than One Route

Akin to a three-pronged building block in a child's construction set, clathrin can provide links to create larger complexes. When lots of these proteins are assembled together, they can form tough little cages into which cells packs many of their essential —hormones, neurotransmitters, and other payloads that need to be transported throughout the cell.

Once thought to be solely involved in transport inside cells, scientists have uncovered more and more of the protein's hidden functions in the last half-dozen years, including some roles it plays in .

For instance, they learned several years ago about its role in the function of "spindles." Normally when a cell divides, it forms a spindle by laying down tracks of structural proteins, and uses them as scaffolding to separate the cell's DNA (in the form of chromosomes) into two equal collections—one identical set of DNA for each of the new . Scientists found that clathrin is involved in stabilizing these spindles.

Now, however, Brodsky and her colleagues have shown that clathrin does even more. They deleted clathrin from cells using a technique called RNA interference, which involves infusing in small genetic fragments that block the cell from making the clathrin. Doing so, Brodsky and her colleagues showed that clathrin stabilizes the structures in dividing cells known as centrosomes.

Tagged with fluorescent chemicals and viewed under a microscope, the centrosomes within a cell that is about to divide look like two glowing eyes peering through the dark. But without clathrin, the team determined, the eyes increase in number.

Brodsky and her colleagues traced this effect to a protein complex formed by one particular component of clathrin called CHC17, which directly stabilizes the centrosome and helps it mature. Deleting CHC17 or chemically inactivating it, led to cells with a strange appearance. These contained multiple, fragmented centrosomes instead of the normal two and built abnormal spindles.

This discovery may reveal pathways towards abnormalities of chromosome segregation associated with cancer, said Brodsky.

Explore further: Researchers clarify cellular uptake mechanisms for carbon nanotubes

More information: The article, "Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG" by Amy B. Foraker, Stéphane M. Camus, Timothy M. Evans, Sophia R. Majeed, Chih-Ying Chen, Sabrina B. Taner, Ivan R. Corrêa Jr., Stephen J. Doxsey and Frances M. Brodsky appears in the August 20, 2012 issue of the Journal of Cell Biology. dx.doi.org/10.1083/jcb.201205116

Related Stories

Breaking down Huntington's disease one protein at a time

February 4, 2008

Hoping to piece together the intricate series of interactions that lead to Huntington's disease, Indiana University Bloomington scientists have determined the shape and structure of a binding site that may prove useful in ...

Cow Brain Protein May Hold Alternative Energy Promise

April 20, 2010

(PhysOrg.com) -- Of all the ideas that hold promise in alternative energy, cow brains are an odd candidate. They do not fit into the list of usual plant-based subjects, such as corn or switch grass. But cow brains contain ...

Endocytosis is simpler than suspected

July 7, 2011

A protein by the name of clathrin plays a key part in endocytosis, the process by which living cells absorb large molecules. The protein can form “cages”, in which these molecules become trapped. Until recently, ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.