Researchers clarify cellular uptake mechanisms for carbon nanotubes

November 30, 2005

They look like the tiniest of needles and have the potential to channel pharmaceutical agents into targeted living cells: carbon nanotubes are long, thin, nanoscale tubes made of one (or more) layers of carbon atoms in a graphite-like arrangement. Drugs can be hooked on to their exteriors and can thus be carried into the cell along with the nanotube. But how?

Hongjie Dai and his team at Stanford University have systematically examined the cellular uptake mechanism for nanotubes with various biological cargos including DNA and proteins.

In order to develop tailored nano-transporters that duly deliver their cargo, it is important to know which route they take through the cell membrane. Molecules can get into the interior of a cell by various means. First, the researchers needed to determine if this is a case of active or passive transport. The passive transport mechanisms do not consume energy; molecules just pass the membrane.

Regarding active mechanisms, nanotubes might enter the cell by so-called endocytosis: Parts of the cell membrane include the molecules and migrate into the interior. This requires energy in the form of ATP and sufficiently high temperatures. Dai and his colleagues cooled some cell cultures and reacted others with an inhibitor that stops ATP production. In both cases the cells were no longer able to absorb nanotubes. “We conclude that this is an energy-dependent endocytosis mechanism,” says Dai. For the nanotubes, among the different types of endocytosis pathways the researchers thought two mechanisms in particular seemed likely: caveolae-mediated and clathrin-dependent endocytosis.

Caveolae are little indentations made of lipids in the cell membrane. Molecules from the medium enter the indentation, which then closes itself off into a bubble that migrates into the cell interior. By means of inhibitors, the researchers disrupted the lipid distribution in the cell membrane, thus disrupting the caveolae—this did not prevent intake of the nanotubes. The clathrin-dependent mechanism involves the docking of molecules from the medium at special docking stations on the exterior of the membrane. Tripod-shaped protein molecules, clathrin, are bound to the docking site inside the membrane.

The clathrin molecules aggregate into a two-dimensional network that forms an arch that results in a cavity in the membrane. This again results in a bubble that closes itself off and wanders into the interior of the cell. Sugar-containing or potassium-free media destroy clathrin sheets. The cell cultures were thus placed under these conditions and were no longer able to absorb the nanotubes. Says Dai, “This clearly indicates clathrin-dependent endocytosis for carbon nanotubes used in our work.” This result contradicts the results of another group who propose a non-endocytotic mechanism. The reasons for the discrepancy have yet to be determined.

Source: Angewandte Chemie

Explore further: Deep insights from surface reactions

Related Stories

Deep insights from surface reactions

November 30, 2016

Things that happen on the surface are often given short shrift compared to what goes on inside. But when it comes to chemical reactions, what occurs on the surface can mean the difference between a working material and one ...

Manipulating cell membranes using nanotubes

June 1, 2015

Japanese researchers have developed a targeted method for opening up cell membranes in order to deliver drugs to, or manipulate the genes of, individual cells.

Recommended for you

Friction in the vacuum?

February 20, 2017

(Phys.org)—When three physicists first discovered through their calculations that a decaying atom moving through the vacuum experiences a friction-like force, they were highly suspicious. The results seemed to go against ...

Selenium deficiency promoted by climate change

February 20, 2017

Selenium is an essential micronutrient obtained from dietary sources such as cereals. The selenium content of foodstuffs largely depends on concentrations in the soil: previous studies have shown that low selenium concentrations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.