Microwave ovens may help produce lower cost solar energy technology

Aug 24, 2012

(Phys.org)—The same type of microwave oven technology that most people use to heat up leftover food has found an important application in the solar energy industry, providing a new way to make thin-film photovoltaic products with less energy, expense and environmental concerns.

Engineers at Oregon State University have for the first time developed a way to use microwave heating in the synthesis of copper zinc tin sulfide, a promising solar cell compound that is less costly and toxic than some solar .

The findings were published in Physica Status Solidi A, a professional journal.

"All of the elements used in this new compound are benign and inexpensive, and should have good solar cell performance," said Greg Herman, an associate professor in the School of Chemical, Biological and Environmental Engineering at OSU.

"Several companies are already moving in this direction as prices continue to rise for some alternative compounds that contain more expensive elements like indium," he said. "With some improvements in its solar efficiency this new compound should become very commercially attractive."

These thin-film photovoltaic technologies offer a low cost, high volume approach to manufacturing . A new approach is to create them as an ink composed of nanoparticles, which could be rolled or sprayed – by approaches such as old-fashioned – to create solar cells.

To further streamline that process, researchers have now succeeded in using , instead of conventional heating, to reduce reaction times to minutes or seconds, and allow for great control over the production process. This "one-pot" synthesis is fast, cheap and uses less energy, researchers say, and has been utilized to successfully create nanoparticle inks that were used to fabricate a .

"This approach should save money, work well and be easier to scale up at commercial levels, compared to traditional synthetic methods," Herman said. "Microwave technology offers more precise control over heat and energy to achieve the desired reactions."

Explore further: Expert calls for nuke plant closure (Update)

Related Stories

IBM develops promising contender for cheaper solar cells

Feb 11, 2010

(PhysOrg.com) -- Solar cells could make fossil fuels virtually redundant if they were cheaper, but their use of rare elements and complex manufacturing processes makes them expensive. Now IBM Research has ...

Advance made in thin-film solar cell technology

Apr 20, 2010

Researchers have made an important breakthrough in the use of continuous flow microreactors to produce thin film absorbers for solar cells - an innovative technology that could significantly reduce the cost ...

Honda to Mass Produce Next-Generation Thin Film Solar Cell

Dec 19, 2005

Honda announced its plan to begin mass production in 2007, of an independently developed thin film solar cell composed of non-silicon compound materials, which requires 50% less energy, and thus generate 50% less CO2, during ...

Recommended for you

Indonesia passes law to tap volcano power

20 hours ago

The Indonesian parliament on Tuesday passed a long-awaited law to bolster the geothermal energy industry and tap the power of the vast archipelago's scores of volcanoes.

Expert calls for nuke plant closure (Update)

Aug 25, 2014

A senior federal nuclear expert is urging regulators to shut down California's last operating nuclear plant until they can determine whether the facility's twin reactors can withstand powerful shaking from ...

Image: Testing electric propulsion

Aug 20, 2014

On Aug. 19, National Aviation Day, a lot of people are reflecting on how far aviation has come in the last century. Could this be the future – a plane with many electric motors that can hover like a helicopter ...

Where's the real value in Tesla's patent pledge?

Aug 20, 2014

With the much-anticipated arrival next month of electric vehicle manufacturer Tesla's Model S to Australian shores, it's a good time to revisit Tesla's pledge to freely share patents. ...

User comments : 0