Atomic structure of nanoparticles brought under control

June 14, 2012 by Richard Palmer
Image: Professor Richard E Palmer / University of Birmingham

Nanotechnologists are control freaks. They want to exploit the properties of materials at the ultimate level - the atoms.

Imagine the frustration therefore when you build a near million dollar machine to create beams of nanoparticles, each containing a precisely selected number of atoms, 923 say (a "magic number"), and then you find that you've made at least three different atomic architectures at the same time, like three flavours of ice cream. You want to find some way to transform all the flavours into one.

Wang and Palmer at the University of Birmingham, UK, (Physical Review Letters 108 245502, 2012) have found a solution to the challenge.

They use the superfine beam in the aberration-corrected first to reveal the various 3-dimensional - the "isomers" of their gold nanoclusters - and then, by prolonged illumination with the , they drive the particles one by one towards their most stable, equilibrium structures.

The result is a personalised video for each particle, showing the atoms on the move towards their atomic destinations - stable configurations like the decahedron.

Apart from satisfying the desire for control, the results provide a new reference for computational models of nanostructure dynamics, down to the atom scale.

Explore further: 3D nanoparticle in atomic resolution

More information: DOI: 10.1103/PhysRevLett.108.245502

Related Stories

3D nanoparticle in atomic resolution

February 22, 2011

For the first time, scientists from Empa and ETH Zurich have, in collaboration with a Dutch team, managed to measure the atomic structure of individual nanoparticles. The technique, recently published in Nature, could help ...

New record for measurement of atomic lifetime

September 7, 2011

Researchers at the Niels Bohr Institute have measured the lifetime of an extremely stable energy level of magnesium atoms with great precision. Magnesium atoms are used in research with ultra-precise atomic clocks. The new ...

New record for world's smallest atomic valentine

February 14, 2012

(PhysOrg.com) -- Shattering their own world record from two years ago, scientists from the University of Birmingham in the UK have created the unofficial world’s smallest atomic valentine. Their tiny heart measures approximately ...

Designing materials for the future

June 12, 2012

As energy demands rise, materials scientists are increasingly interested in developing longer-lasting materials for use in the next generation of advanced nuclear and fusion reactors. However, before researchers can think ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.