New design reduces the areal footprint of nanowire transistors by a factor of two

Jun 20, 2012
The nanowire transistor uses two wrap-around metal gates to define two distinct transistors on a single nanowire (vertical rod). Credit: 2011 IEEE

Semiconductor chip makers first began the production of three-dimensional (3D) transistors in 2011. Engineers can pack more 3D transistors onto a single chip because they are much more compact than traditional transistors.

For of semiconductor chips, however, there is a need to shrink these 3D transistors further and the use of vertical in the transistor design is one of the promising approaches. Moreover, the area taken up by a nanowire-based transistor is typically half that of a planar transistor — or even less if considering more complicated components, like inverters. Xiang Li at the A*STAR Institute of Microelectronics and co-workers have now integrated two transistors onto a single vertical silicon nanowire, pushing the areal density limit of nanowire transistors even further.

The researchers used wrap-around gates, or ‘gate-all-around’ gates, in the making of their device. These gates consist of a vertical cylinder, at the center of which lies the nanowire. They are much better at controlling the transistor current than traditional planar gates. Li and co-workers decreased the area required for a gate-all-around nanowire transistor by a factor of two by constructing two out of a single vertical nanowire. Their design involves two wrap-around gates, one above the other, separated by a thin dielectric layer to isolate them electrically (see image). Unlike other independent double-gate transistor designs, such as those employing a vertical fin-like channel, changing the gate voltage applied to one transistor does not change the threshold (or turn-on) voltage of the other. This means that either of the gates can modulate the nanowire current independently.

As a result, Li and co-workers were able to construct a simple logic device using just one nanowire. For a nanowire doped with negative carriers, current was able to flow when both gate voltages were high, but current stopped when either gate voltage was low. This device therefore functioned as an ‘AND’ digital gate, but used only half the area it otherwise would require. The stacked gate arrangement may also be useful for enabling an emerging type of transistor, called a tunnel field effect transistor (TFET). Because TFETs rely on the tunneling of electrons across a barrier rather than the thermal activation of electrons, they turn on very quickly and consume very little power. Li says the tunnel junction required for a TFET could be formed between the two of the dual-gate nanowire geometry, allowing a particularly compact implementation. The dual-gate design could also be used for other technologies, such as non-volatile memory.

Explore further: 3-D printing leads to another advance in make-it-yourself lab equipment

More information: Li, X. et al. Vertically stacked and independently controlled twin-gate MOSFETs on a single Si nanowire. IEEE Electron Device Letters 32, 1492–1494 (2011).

add to favorites email to friend print save as pdf

Related Stories

It's a wrap! Nanowire opens gate to new devices

Apr 07, 2011

(PhysOrg.com) -- In an interesting feat of nanoscale engineering, researchers at Lund University in Sweden and the University of New South Wales have made the first nanowire transistor featuring a concentric ...

New 3-D transistors promising future chips, lighter laptops

Dec 06, 2011

(PhysOrg.com) -- Researchers from Purdue and Harvard universities have created a new type of transistor made from a material that could replace silicon and have a 3-D structure instead of conventional flat computer chips.

Intel Researchers Improve Tri-Gate Transistor

Jun 13, 2006

Intel Corporation researchers today disclosed they have developed new technology designed to enable next era in energy-efficient performance. Intel's research and development involving new types of transistors ...

Vertical silicon nanowires for nonvolatile memory devices

Dec 23, 2011

As electronic devices become smaller and more sophisticated, the search for compact nonvolatile memory becomes increasingly important. However, conventional silicon technologies, such as complementary metal-oxide-semiconductor ...

Recommended for you

Peugeot hybrid compressed-air car set for Paris Motor Show

1 hour ago

An 860-kilogram concept city car from Peugeot indicates impressive fuel economy. This latest concept "has its sights set on meeting the French government's goal of putting an affordable 2.0l/100km (141mpg) car into production by 2020," said Jordan Bis ...

Hit 'Just Dance' game goes mobile Sept. 25

1 hour ago

Smartphone lovers will get to show off moves almost anywhere with the Sept. 25 release of a free "Just Dance Now" game tuned for mobile Internet lifestyles.

Alibaba's plan: Today, China. Tomorrow, the world.

2 hours ago

Amazon and eBay should watch their backs. As Chinese e-commerce powerhouse Alibaba readies what could be the biggest initial public offering ever on the New York Stock Exchange, it is quietly hinting at plans ...

Indie game developers sprouting at Tokyo Game Show

4 hours ago

Nestled among the industry giants at the Tokyo Game Show Thursday are a growing number of small and independent games developers from Asia and Europe, all hoping they are sitting on the next Minecraft.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

chromosome2
not rated yet Jun 20, 2012
Given that lithography is so close to the end of its role in continuing Murphy's law as evidenced by nVidia openly complaining about TSMCs production issues and the uselessness of further shrinking process nodes, I'd say this advancement is timely. It might buy us one or two more generations on silicon-- and that could be exactly what we need as a stopgap until the next fundamentally different technology is ready for processor manufacture.