Self-assembling highly conductive plastic nanofibers

Apr 23, 2012
Artist's impression based on a real atomic force microscopy (AFM) image showing conductive supramolecular fibers trapped between two gold electrodes spaced 100 nm apart. Each plastic fiber is composed of several short fibers and is capable of transporting electrical charges with the same efficiency as a metal. Credit: Graphics: M. Maaloum, ICS (CNRS)

Researchers from CNRS and the Université de Strasbourg, headed by Nicolas Giuseppone and Bernard Doudin, have succeeded in making highly conductive plastic fibers that are only several nanometers thick. These nanowires, for which CNRS has filed a patent, “self-assemble” when triggered by a flash of light.

Inexpensive and easy to handle, unlike carbon nanotubes, they combine the advantages of the two materials currently used to conduct electric current: metals and plastic organic polymers. In fact, their remarkable electrical properties are similar to those of metals. In addition, they are light and flexible like plastics, which opens up the possibility of meeting one of the most important challenges of 21st century electronics: miniaturizing components down to the nanometric scale. This work will be published on 22 April 2012 on Nature Chemistry's website. The next step is to demonstrate that these fibers can be industrially integrated within electronic devices such as flexible screens, solar cells, etc.

In previous work published in 2010 (Angew. Chem. Int. Ed. 2010, 49, 6974-78), Giuseppone and his colleagues succeeded for the first time in obtaining nanowires. To achieve this feat, they chemically modified “triarylamines”, synthetic molecules that have been used for decades by industry in Xerox photocopying processes. Much to their surprise, they observed that in light and in solution, their new molecules stacked up spontaneously in a regular manner to form miniature fibers. These wires, a few hundred nanometers long, are made up of what is known as the “supramolecular” assembly of several thousand molecules.

Real atomic force microscopy image showing a conductive supramolecular fiber, composed of several short fibers. Each grain corresponds to a molecule (the image is 50 nm in height). Credit: M. Maaloum, ICS (CNRS)

In collaboration with Doudin's team, the researchers then studied the electrical properties of these in detail. This time, they placed their molecules in contact with an electronic microcircuit comprising gold electrodes spaced 100 nm apart. They then applied an electric field between these electrodes.

Their first important finding was that, when triggered by a flash of light, the fibers self-assemble solely between the electrodes. The second surprising result was that these structures, which are as light and flexible as plastics, turn out to be capable of transporting extraordinary current densities, above 2*106 Amperes per square centimeter (A.cm-2), approaching those of copper wire. In addition, they have very low interface resistance with metals: 10,000 times below that of the best organic polymers. 

The researchers now hope to demonstrate that their fibers can be used industrially in miniaturized electronic devices such as flexible screens, solar cells, transistors, printed nanocircuits, etc.

Explore further: New type of barcode could make counterfeiters' lives more difficult

More information: Light-triggered Self-construction of Supramolecular Organic Nanowires as Metallic Interconnects. Vina Faramarzi, et al. Nature Chemistry, On line on 22 April 2012 ( DOI: 10.1038/NCHEM.1332 )

add to favorites email to friend print save as pdf

Related Stories

New generation of flexible graphene transistors

Mar 15, 2012

Making electronic components using graphene, a material composed of a single layer of carbon atoms, is one of today's major technological challenges. Researchers hope to harness the outstanding electron mobility ...

Tube-shaped solar cells could be woven into clothing

Mar 01, 2012

(PhysOrg.com) -- Titania semiconducting nanorods grown on the surface of carbon fibers look more like bristles on a tiny hairbrush than a solar cell, but the novel configuration could have several advantages ...

Organic 2-D films could lead to better solar cells

Apr 12, 2011

(PhysOrg.com) -- Solar cells made from organic materials are inexpensive, lightweight and flexible, but their performance lags behind cells that contain silicon or other inorganic materials. Cornell chemist ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

8 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 0

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...