'Super-nano' plastic fibres touted for next-generation IT

April 22, 2012
This picture taken in 2011 in Les Mees, southern France shows solar panels. Materials scientists in France said on Sunday they had made highly-conductive plastic wires on the nanoscale, an invention with potential for mobile devices, computing and solar energy.

Materials scientists in France said on Sunday they had made highly-conductive plastic wires on the nanoscale, an invention with potential for mobile devices, computing and solar energy.

Just a few billionths of a metre across, the fibres are light, inexpensive, flexible and easy to handle, in contrast to carbon nanotubes, the team said in the journal Nature Chemistry.

The wires are derivatives of man-made molecules called triarylamines that have been used for decades in photocopiers.

In their study, the scientists say they were surprised to find that the wires "self-assemble" spontaneously in response to a flash of light, and are nearly as conductive as copper.

In a bench-test experiment, the tiny materials formed a bridge between two electrodes that were spaced 100 nanometres (100 billionths of a metre) apart.

"The researchers now hope to demonstrate that their fibres can be used industrially in miniaturised electronic devices such as flexible screens, solar cells, transistors (and) printed nanocircuits," the National Centre for Scientific Research (CNRS) said in a press release.

Explore further: Collecting the sun's energy: Novel electrode for flexible thin-film solar cells

Related Stories

New "Molecular Wires" Nanotechnology to Replace Silicon

August 23, 2004

Scientists from the U.S. Department of Energy's Brookhaven National Laboratory and the University of Florida have uncovered information that may help "molecular wires" replace silicon in micro-electronic circuits and/or components ...

NDSU nano research could impact flexible electronic devices

February 13, 2012

A discovery by a research team at NDSU and the National Institute of Standards and Technology shows the flexibility and durability of carbon nanotube films and coatings are intimately linked to their electronic properties. ...

Ink with tin nanoparticles could print future circuit boards

April 12, 2011

(PhysOrg.com) -- Almost all electronic devices contain printed circuit boards, which are patterned with an intricate copper design that guides electricity to make the devices functional. In a new study, researchers have taken ...

An advance toward ultra-portable electronic devices

July 20, 2011

Scientists are reporting a key advance toward the long-awaited era of "single-molecule electronics," when common electronic circuits in computers, smart phones, audio players, and other devices may shrink to the size of a ...

Recommended for you

Freezing lithium batteries may make them safer and bendable

April 24, 2017

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing ...

Graphene holds up under high pressure

April 24, 2017

A single sheet of graphene, comprising an atom-thin lattice of carbon, may seem rather fragile. But engineers at MIT have found that the ultrathin material is exceptionally sturdy, remaining intact under applied pressures ...

Nanoparticles remain unpredictable

April 19, 2017

The way that nanoparticles behave in the environment is extremely complex. There is currently a lack of systematic experimental data to help understand them comprehensively, as ETH environmental scientists have shown in a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.