Hot attraction in bimetals: A cyano-bridged vanadium-niobium bimetal assembly with a Curie temperature of 210 K

Jan 24, 2012

Cyano-bridged bimetal assemblies attract attention because of their magnetic properties such as photomagnetization, humidity-induced magnetization, and nonlinear magneto-optical effect, which make them suitable for many applications. A high Curie temperature is an asset for the use of such magnetic compounds in functional materials. Hexa-, hepta-, and octacyanometalates have been shown to have high Curie temperatures as a result of the high coordination number of their metal centers and the large superexchange interactions due to their diffuse 4d or 5d orbitals. Shin-ichi Ohkoshi and his co-workers at the University of Tokyo report the compound with the highest Curie temperature among octacyano-bridged bimetal assemblies in the Short Communication published in the European Journal of Inorganic Chemistry.

On the basis of initial studies indicating that an increased stoichiometry of vanadium(II) led to a higher Curie temperature in vanadium hexacyanochromate systems, Ohkoshi et al. used a small amount of VIII as catalyst to convert a higher proportion of VII in a similar system. The magnetic properties of the resulting octacyano-bridged vanadium–niobium bimetal assembly were investigated. The compound, whose formula was determined to be K0.59VII1.59VIII0.41[NbIV(CN)8] ·(SO4)0.50·6.9H2O, is ferrimagnetic, and the spins on VII and VIII are antiparallel with respect to the spin on NbIV. Its Curie temperature is 210 K. This high value is a result of the enhanced superexchange interaction through the VII–NC–NbIV pathway.

This study reports a strategy to synthesize magnetic materials with high Curie temperature to enhance the suitability of their for applications.

Explore further: New process can convert human-generated waste into fuel in space

More information: Shin-ichi Ohkoshi, A Cyano-Bridged Vanadium–Niobium Bimetal Assembly Exhibiting a High Curie Temperature of 210 K, European Journal of Inorganic Chemistry, dx.doi.org/10.1002/ejic.201101219

add to favorites email to friend print save as pdf

Related Stories

Scientists make magnetic new graphene discovery

Apr 14, 2011

(PhysOrg.com) -- University of Maryland researchers have discovered a way to control magnetic properties of graphene that could lead to powerful new applications in magnetic storage and magnetic random access ...

Three-dimensional polymer with unusual magnetism

Nov 13, 2006

Up to now it has not been possible to fabricate magnets from organic materials, like for example plastics. Recently, however, experiments at the Forschungszentrum Dresden-Rossendorf (Germany) in collaboration with an international ...

Towards the magnetic fridge

Apr 21, 2006

Researchers at the University of Cambridge have discovered a material that gives a whole new complexion to the term 'fridge magnet'. When this alloy is placed in a magnetic field, it gets colder. Karl Sandeman and his co-workers ...

Novel magnets made from the strongest known hydrogen bond

Dec 06, 2006

A team of scientists from the US, the UK and Germany has been the first to make a magnetic material constructed from nature's strongest known hydrogen bond. Hydrogen bonds are responsible for many of the properties ...

Recommended for you

Electronic switches on the molecular scale

Nov 25, 2014

A molecular electronic switch is a junction created from individual molecules that can alternate between two or more stable states, making the switch act as a conductor or an insulator. These switches show ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Graeme
not rated yet Jan 24, 2012
210K is not what we would normally call a high temperature. I am surprised that this is useful for detecting humidity, as it would condense as frost on the cold detector. Lets hope they can get it up to room temperature.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.