Putting the squeeze on batteries (w/ video)

November 22, 2011 by Prachi Patel
Putting the squeeze on batteries (w/ video)
People rely on lithium-ion batteries for every day items, like cellphones and laptops. Engineering professor Craig Arnold is undertaking the task of making the batteries last longer and provide more energy. In a short video he discusses his work on this project. Video stills by Volker Steger

People depend on lithium-ion batteries every day to power cellphones, laptops and other electronic devices, and perhaps one day to run cars. This video shows how Craig Arnold, an associate professor of mechanical and aerospace engineering at Princeton University, is working to make those batteries last longer and provide more energy.

Lithium-ion batteries are made up of layers of different materials that are rolled up tightly together. There are three main layers: positive electrode material, negative and a "separator membrane," which keeps the from touching one another when snugly packed.

The video will load shortly
Professor Craig Arnold is working to make lithium-ion batteries last longer and provide more energy.

Arnold's lab simulates what happens to the separator membrane over years of use. When it is new, the separator membrane has holes much like a sponge. Those holes allow the lithium ions to flow easily, generating power. But as it ages, the sponge-like separator membrane becomes compressed and the holes begin to close, preventing the flow of lithium ions and keeping the current from flowing.

One way to fix this, as Arnold describes in the video, is to prevent the pores from closing by better managing the stress and creating separator materials that can resist these forces.

"Batteries are not just electrochemical devices," says Arnold. "Their can also affect their performance. By better understanding the science of batteries, we can begin to engineer ways to keep the current flowing longer."

Funding for Arnold's research is from the National Science Foundation, Princeton's Carbon Mitigation Initiative and the University's Grand Challenges initiative. Funding for this video is from the High Meadows Foundation Sustainability Fund.

Explore further: New electrodes may provide safer, more powerful lithium-ion (Li-ion) batteries

Related Stories

Recommended for you

Microsoft aims at Apple with high-end PCs, 3D software

October 26, 2016

Microsoft launched a new consumer offensive Wednesday, unveiling a high-end computer that challenges the Apple iMac along with an updated Windows operating system that showcases three-dimensional content and "mixed reality."

Making it easier to collaborate on code

October 26, 2016

Git is an open-source system with a polarizing reputation among programmers. It's a powerful tool to help developers track changes to code, but many view it as prohibitively difficult to use.

Dutch unveil giant vacuum to clean outside air

October 25, 2016

Dutch inventors Tuesday unveiled what they called the world's first giant outside air vacuum cleaner—a large purifying system intended to filter out toxic tiny particles from the atmosphere surrounding the machine.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 22, 2011
As these seperators are made of polyethylene or polypropylene, I wonder if glass or ceramic cloths have been tried.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.