Photovoltaics among fastest growing industries in the world

September 6, 2011

The tenth edition of the JRC PV Status Report indicates that in 2010, the photovoltaic (PV) industry production more than doubled and reached a world-wide production volume of 23.5 gigawatt (GW) of photovoltaic modules.

Since 1990, module production has increased more than 500-fold from 46 megawatts (MW) to 23.5 GW in 2010, which makes photovoltaics one of the fastest-growing industries at present.

Photovoltaics is a method of generating electrical power by converting solar radiation into direct current electricity. It is one of the most promising technological options to realise the shift to a decarbonised energy supply.

Current solar cell technologies are well established with sufficient efficiency and energy output for at least 25 years of lifetime. This reliability, in addition to the increasing potential of electricity interruption from grid overloads, and the rise of electricity prices from conventional energy sources, add to the attractiveness of photovoltaic systems.

In 2010, the world-wide photovoltaic production more than doubled, driven by major increases in Europe. For 2010 the annual market volume of newly-installed solar photovoltaic electricity systems varies between 17 and 19 GW, depending on estimates. This represents mostly the grid-connected photovoltaic market, as there are no reliable estimates available for the non grid-connected market. The report, published by the European Commission's Joint Research Centre (JRC) shows that with a cumulative installed capacity of over 29 GW, the European Union is leading in PV installations. By the end of 2010, European photovoltaic installations provided more than 70% of the total world-wide solar photovoltaic electricity generation capacity.

The photovoltaic industry has changed dramatically over the last few years. China has become the major manufacturing centre for solar cells and modules followed by Taiwan, Germany and Japan. Amongst the twenty biggest photovoltaic manufacturers in 2010, only four had production facilities in Europe, namely First Solar (USA, Germany, Malaysia, Vietnam), Q-Cells (Germany and Malaysia), REC (Norway and Singapore) and Solarworld (Germany and USA).

A special feature is the dramatic price reduction for solar modules by almost 50% over the last three years. This can be explained by the evolution from a supply to a demand-driven market and the resulting over-capacity for solar modules. Business analysts predict that investments in PV technology could double from € 35-40 billion in 2010 to over € 70 billion in 2015, while they expect prices for consumers to continuously decrease.

Even with current economic difficulties, the number of market implementation programmes is still increasing world-wide. Examples of such measures to promote the use of PV technology include renewable portfolio standards, and feed-in tariff tax incentives. Coupled with the overall rising energy prices and pressure to reduce greenhouse gas emissions, this will continue to keep demand for solar systems high.

In the long-term, growth rates for photovoltaics are expected to remain high. The study concludes that in order to maintain the high growth rate of the photovoltaic industry, different pathways have to be pursued. There is a need to reduce the material consumption per silicon solar cell because the cost of silicon is one of the main price factors of such solar cells. In parallel, the manufacturing of thin-film solar cells should be increased and the introduction of concentrated photovoltaics (CPVs) should be accelerated. Concentrated photovoltaics (CPVs) is a new technology which substitutes semi-conductor material with cheaper concentrating lenses, typically of plastics.

Explore further: Hybrid system designed to harvest 'full spectrum' of solar energy

More information: The report is online available at: re.jrc.ec.europa.eu/refsys/

Related Stories

Watering solar cells makes them grow... in power

July 27, 2016

Perovskite solar cells are the rising star in the photovoltaic landscape. Since their invention, less than ten years ago, their efficiency has doubled twice and it is now over 22% - an astonishing result in the renewable ...

Developing the next generation of solar cells

August 12, 2016

Through a $900,000 grant from the Advanced Research Projects Agency-Energy (ARPA-E), the George Washington University has joined a partnership to develop novel solar cells and create what has the potential to be the world's ...

Stability of cheap solar cells improved

August 1, 2016

The stability of a very efficient and cheap material for solar cells has now been enhanced by up to two orders of magnitude. The material manipulations that enabled this enhancement were developed in a project supported by ...

Recommended for you

Auto, aerospace industries warm to 3D printing

August 25, 2016

New 3D printing technology unveiled this week sharply increases the size of objects that can be produced, offering new possibilities to remake manufacturing in the auto, aerospace and other major industries.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.