Related topics: solar cells

Enhancing quantum dot solar cell efficiency to 11.53%

A novel technology that can improve the efficiency of quantum dot solar cells to 11.53% has been unveiled. Published in the February 2020 issue of Advanced Energy Materials, it has been evaluated as a study that solved the ...

Black silicon photodetector breaks the 100% efficiency limit

Aalto University researchers have developed a black silicon photodetector that has reached above 130% efficiency. Thus, for the first time, a photovoltaic device has exceeded the 100% limit, which has earlier been considered ...

Aerosols have an impact on the solar power yield in Europe

High up in the atmosphere, even the smallest particles lead to the formation of clouds. Air flows that carry Sahara dust to Europe also affect our weather. In the PermaStrom research project, a joint research team from Karlsruhe ...

Molecular tweak improves organic solar cell performance

A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics. The new design approach, targeting the molecular backbone of the cell's ...

New solar power generator to be deployed to space station

A new solar power generator prototype developed by Ben-Gurion University of the Negev (BGU) and research teams in the United States, will be deployed on the first 2020 NASA flight launch to the International Space Station.

page 1 from 40

Photovoltaics

Photovoltaics (PV) is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Materials presently used for photovoltaics include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium gallium selenide/sulfide. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years.

Solar photovoltaics is growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar PV. Some 24 GW of solar is projected in November 2011 to be installed in that year, pushing up worldwide capacity to roughly 64 GW. Installations may be ground-mounted (and sometimes integrated with farming and grazing) or built into the roof or walls of a building (building-integrated photovoltaics).

Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaics has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity, have supported solar PV installations in many countries.

This text uses material from Wikipedia, licensed under CC BY-SA