Researchers find high energy output from algae-based fuel, but 'no silver bullet'

Aug 10, 2011

Algae-based fuel is one of many options among the array of possible future energy sources. New University of Virginia research shows that while algae-based transportation fuels produce high energy output with minimal land use, their production could come with significant environmental burdens.

For farmers looking to maximize profits, algae would produce considerably more transportation than and switch grass for every hectare planted, and can also be grown on poor-quality that cannot be easily used to grow such as corn, according to a report by Andres F. Clarens and Lisa M. Colosi, both assistant professors of civil and environmental engineering in the U.Va. School of Engineering and Applied Science, and Mark A. White, professor in the McIntire School of Commerce.

From an standpoint, however, algae-based fuel has mixed performance, compared to other biomass sources. Algae-based biodiesel production uses more energy – in the form of petroleum-powered processes – than other biofuels. Additionally, algae-based biodiesel and bioelectricity production processes also require substantial amounts of water and emit more greenhouse gases.

The report, "Environmental Impacts of Algae-Derived Biodiesel and Bioelectricity for Transportation," is available online on the website of Environmental Science and Technology, a leading environmental research journal and will be published in an upcoming print edition. Hagai Nassau and Eleazer P. Resurreccion, civil and environmental engineering graduate students, contributed to the research.

"We're looking at the entire landscape of biofuels, and asking 'What are the options?'" Colosi said.

She hopes the research will inform public policy debates, allowing people to make the best decisions about alternatives to petroleum.

"It comes down to value-driven questions," Colosi said. "Do we value driving long distances in SUVs that require a lot of fuel? If so, we need to look at so we can produce as much fuel as possible. If we are concerned about energy use, climate changes and water supply, then we need to think more strongly about how we can best use canola and ."

The U.Va. researchers relied on what is known as a "well-to-wheel" life-cycle assessment of algae-based biofuel and bioelectricity production for . The research began with examining how the source crops are grown and continued through the point of their transformation into useable fuels for vehicles. They expressed of the various biomass sources by showing how many kilometers a car could travel per the amount of energy harvested from a hectare of land.

The current paper builds on the modeling results the U.Va. team reported in a 2010 paper in Environmental Science and Technology. In that work, they looked at the inputs such as fertilizer, water and petroleum power used to produce algae-based biodiesel. They compared this data to the amount of energy produced by other biomass stocks. The current paper accounts for variables throughout the entire production process.

Another important finding in the current paper shows the relative favorability of using biofuels to generate electricity rather than liquid fuels (i.e. biodiesel) for internal combustion engines. The process has a higher energy return than other algae-based biofuels because it involves fewer steps to transform the biomass into a usable energy form. Energy generated in this manner could power electric vehicles, but the authors acknowledge that the limited number of those vehicles currently in use could reduce the overall benefit of bioelectricity for transportation.

For the next phase of their research, the team plans to monetize environmental costs and benefits associated with production of the various bio-fuels.

"Ultimately there is no silver bullet for replacing petroleum as a source," Clarens said. "We've seen that alternatives typically come with unforeseen burdens. We saw it with ethanol, and we're seeing it now with shale gas. Our hope is that work like this will help us avoid similar pitfalls if algae-based fuels are ultimately deployed on large scale."

Explore further: Tiny power plants hold promise for nuclear energy

Related Stories

Algae biodiesel production has to be three times cheaper

Oct 01, 2010

The cost of producing biodiesel from algae is now three and a half times more than producing it from oil, and twice as much as producing fuel from rapeseed. Investments in biotechnology would however make it feasible for ...

Algae could replace 17 percent of US oil imports: study

Apr 13, 2011

High oil prices and environmental and economic security concerns have triggered interest in using algae-derived oils as an alternative to fossil fuels. But growing algae – or any other biofuel source ...

Alternative fuels may drain dwindling water supplies

Oct 20, 2008

As the search for new fuels intensifies, researchers in Texas report that switching to certain alternative fuels to power cars, trucks, and SUVs may require the use of much more water than conventional petroleum-based gasoline ...

Recommended for you

Tiny power plants hold promise for nuclear energy

3 hours ago

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...

Obama launches measures to support solar energy in US

3 hours ago

The White House Thursday announced a series of measures aimed at increasing solar energy production in the United States, particularly by encouraging the installation of solar panels in public spaces.

Tailored approach key to cookstove uptake

3 hours ago

Worldwide, programs aiming to give safe, efficient cooking stoves to people in developing countries haven't had complete success—and local research has looked into why.

Wireless power transfer achieved at five-meter distance

4 hours ago

The way electronic devices receive their power has changed tremendously over the past few decades, from wired to non-wired. Users today enjoy all kinds of wireless electronic gadgets including cell phones, ...

Environmentally compatible organic solar cells

Apr 16, 2014

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

User comments : 0

More news stories

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Is Parkinson's an autoimmune disease?

The cause of neuronal death in Parkinson's disease is still unknown, but a new study proposes that neurons may be mistaken for foreign invaders and killed by the person's own immune system, similar to the ...