Sun-free photovoltaics

Jul 29, 2011 by Nancy W. Stauffer
Sun-free photovoltaics
A variety of silicon chip micro-reactors developed by the MIT team. Each of these contains photonic crystals on both flat faces, with external tubes for injecting fuel and air and ejecting waste products. Inside the chip, the fuel and air react to heat up the photonic crystals. In use, these reactors would have a photovoltaic cell mounted against each face, with a tiny gap between, to convert the emitted wavelengths of light to electricity. Photo: Justin Knight

A new photovoltaic energy-conversion system developed at MIT can be powered solely by heat, generating electricity with no sunlight at all. While the principle involved is not new, a novel way of engineering the surface of a material to convert heat into precisely tuned wavelengths of light — selected to match the wavelengths that photovoltaic cells can best convert to electricity — makes the new system much more efficient than previous versions.

The key to this fine-tuned light emission, described in the journal Physical Review A, lies in a material with billions of nanoscale pits etched on its surface. When the material absorbs heat — whether from the sun, a hydrocarbon fuel, a decaying radioisotope or any other source — the pitted surface radiates energy primarily at these carefully chosen wavelengths.

Based on that technology, MIT researchers have made a button-sized power generator fueled by butane that can run three times longer than a lithium-ion battery of the same weight; the device can then be recharged instantly, just by snapping in a tiny cartridge of fresh fuel. Another device, powered by a radioisotope that steadily produces heat from radioactive decay, could generate electricity for 30 years without refueling or servicing — an ideal source of electricity for spacecraft headed on long missions away from the sun.

According to the U.S. Energy Information Administration, 92 percent of all the energy we use involves converting heat into mechanical energy, and then often into electricity — such as using fuel to boil water to turn a turbine, which is attached to a generator. But today's mechanical systems have relatively low efficiency, and can't be scaled down to the small sizes needed for devices such as sensors, smartphones or medical monitors.

"Being able to convert heat from various sources into electricity without moving parts would bring huge benefits," says Ivan Celanovic ScD '06, research engineer in MIT's Institute for Soldier Nanotechnologies (ISN), "especially if we could do it efficiently, relatively inexpensively and on a small scale."

It has long been known that photovoltaic (PV) cells needn't always run on . Half a century ago, researchers developed thermophotovoltaics (TPV), which couple a PV cell with any source of heat: A burning hydrocarbon, for example, heats up a material called the thermal emitter, which radiates heat and light onto the PV diode, . The thermal emitter's radiation includes far more infrared wavelengths than occur in the solar spectrum, and "low band-gap" PV materials invented less than a decade ago can absorb more of that infrared radiation than standard silicon PVs can. But much of the heat is still wasted, so efficiencies remain relatively low.

An ideal match

The solution, Celanovic says, is to design a thermal emitter that radiates only the wavelengths that the PV diode can absorb and convert into electricity, while suppressing other wavelengths. "But how do we find a material that has this magical property of emitting only at the wavelengths that we want?" asks Marin Soljačić, professor of physics and ISN researcher. The answer: Make a photonic crystal by taking a sample of material and create some nanoscale features on its surface — say, a regularly repeating pattern of holes or ridges — so light propagates through the sample in a dramatically different way.

"By choosing how we design the nanostructure, we can create materials that have novel optical properties," Soljačić says. "This gives us the ability to control and manipulate the behavior of light."

The team — which also includes Peter Bermel, research scientist in the Research Laboratory for Electronics (RLE); Peter Fisher, professor of physics; and Michael Ghebrebrhan, a postdoc in RLE — used a slab of tungsten, engineering billions of tiny pits on its surface. When the slab heats up, it generates bright light with an altered emission spectrum because each pit acts as a resonator, capable of giving off radiation at only certain wavelengths.

This powerful approach — co-developed by John D. Joannopoulos, the Francis Wright Davis Professor of Physics and ISN director, and others — has been widely used to improve lasers, light-emitting diodes and even optical fibers. The MIT team, supported in part by a seed grant from the MIT Energy Initiative, is now working with collaborators at MIT and elsewhere to use it to create several novel electricity-generating devices.

Mike Waits, an electronics engineer at the Army Research Laboratory in Adelphi, Md., who was not involved in this work, says this approach to producing miniature power supplies could lead to lighter portable electronics, which is "critical for the soldier to lighten his load. It not only reduces his burden, but also reduces the logistics chain" to deliver those devices to the field. "There are a lot of lives at stake," he says, "so if you can make the power sources more efficient, it could be a great benefit."

The button-like device that uses hydrocarbon fuels such as butane or propane as its heat source — known as a micro-TPV power generator — has at its heart a "micro-reactor" designed by Klavs Jensen, the Warren K. Lewis Professor of Chemical Engineering, and fabricated in the Microsystems Technology Laboratories. While the device achieves a fuel-to-electricity conversion efficiency three times greater than that of a lithium-ion battery of the same size and weight, Celanovic is confident that with further work his team can triple the current energy density. "At that point, our TPV generator could power your smartphone for a whole week without being recharged," he says.

Celanovic and Soljačić stress that building practical systems requires integrating many technologies and fields of expertise. "It's a really multidisciplinary effort," Celanovic says. "And it's a neat example of how fundamental research in materials can result in new performance that enables a whole spectrum of applications for efficient energy conversion."

David L. Chandler contributed to this story.

Explore further: A platform to help consumers achieve sustainable energy consumption

Related Stories

Nanoparticles improve solar collection efficiency

Apr 05, 2011

Using minute graphite particles 1000 times smaller than the width of a human hair, mechanical engineers at Arizona State University hope to boost the efficiency -- and profitability -- of solar power plants.

Energy harvesters transform waste into electricity

May 16, 2011

Billions of dollars lost each year as waste heat from industrial processes can be converted into electricity with a technology being developed at the Department of Energy's Oak Ridge National Laboratory.

Solar power, with a side of hot running water

May 03, 2011

MIT researchers and their collaborators have come up with an unusual, highly efficient and possibly less expensive way of turning the sun’s heat into electricity.

Solar-thermal flat-panels that generate electric power

May 01, 2011

(PhysOrg.com) -- High-performance nanotech materials arrayed on a flat panel platform demonstrated seven to eight times higher efficiency than previous solar thermoelectric generators, opening up solar-thermal ...

Device can heat home, save money

Apr 19, 2011

(PhysOrg.com) -- A new polymer-based solar-thermal device is the first to generate power from both heat and visible sunlight – an advance that could shave the cost of heating a home by as much as 40 percent.

Recommended for you

Image: Testing electric propulsion

Aug 20, 2014

On Aug. 19, National Aviation Day, a lot of people are reflecting on how far aviation has come in the last century. Could this be the future – a plane with many electric motors that can hover like a helicopter ...

Where's the real value in Tesla's patent pledge?

Aug 20, 2014

With the much-anticipated arrival next month of electric vehicle manufacturer Tesla's Model S to Australian shores, it's a good time to revisit Tesla's pledge to freely share patents. ...

New type of solar concentrator doesn't block the view

Aug 19, 2014

(Phys.org) —A team of researchers at Michigan State University has developed a new type of solar concentrator that when placed over a window creates solar energy while allowing people to actually see through ...

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

PPihkala
1 / 5 (2) Jul 29, 2011
This thermo cell sounds like a good compliment to Rossi E-Cat.
Martian
1 / 5 (2) Jul 29, 2011
$$$
Eikka
5 / 5 (1) Jul 29, 2011
So, what is the thermodynamic efficiency?
that_guy
not rated yet Jul 29, 2011
Very interesting. The way the prototype is described, it makes me thing of the leaf commercial, where everything is powered by a gas engine.

I'm split on the practical use. I honestly think that if this becomes commercially viable as a battery replacement, I don't think it would take over the phone battery market - every few days you would refill it like a butane lighter - People are very....lazy. They want it to be really easy. Plus it would not be cost effective compared to batteries if you use fueled cartridges.

I think the biggest hurdle is the cost of the nano-patterning. If that is overcome, I can imagine cars and electrics gaining huge amount of efficiencies. and the different places that heat can be harvested are endless.

as far as using the radioactive source...there are already nuclear batteries that last decades...so I don't see what the point is there.

poof
1 / 5 (1) Jul 31, 2011
An article claiming a more efficient device without any efficiency metrics. Worthless.
antonima
not rated yet Jul 31, 2011

I'm split on the practical use. I honestly think that if this becomes commercially viable as a battery replacement, I don't think it would take over the phone battery market - every few days you would refill it like a butane lighter - People are very....lazy.


But the niche market is enormous - third world countries, travelers, early adopters.

And refilling butane is not difficult at all. Although it can result in fireballs ....