A new target to inhibit malaria and toxoplasmosis infection

Jul 25, 2011
Three-dimensional reconstruction of the RON complex at the junction between Toxoplasma gondii and its host cell as the parasite invades the host cell. The red-coloured ring is the RON2 protein, at the boundary between the intra- and extra-cellular parts of the parasite. Credit: Researchers at UMR5235 CNRS Université Montpellier 2

Maryse Lebrun, Research Director at Inserm, and her fellow researchers at the Laboratoire Dynamique des interactions membranaires normales et pathologiques (CNRS, France), have characterised a protein complex that allows the agents that cause malaria and toxoplasmosis to infect host cells. This is a highly original mechanism, since the parasite supplies both the receptor which it inserts into the host cell membrane and the ligand it exposes at its surface. The researchers have now shown the three-dimensional structure of this complex. The new data is published in Science on 22 July 2011. It paves the way for new drugs designed to inhibit the formation of the protein complex in question and block invasion by Plasmodium falciparum in red blood cells.

Apicomplexa form a huge family of parasites that cause many different illnesses in humans and animals, and which includes Plasmodium, the parasite that causes malaria and , the agent that causes toxoplasmosis. Over a million people die of malaria every year. Over a third of the world's population is at risk and the parasite has developed resistance to most of the anti-malaria drugs currently available. Toxoplasmosis is one of the most widespread congenital infections.

Intracellular parasites such as these penetrate inside the cells of the infected organism. The research laboratory in Montpellier is investigating the mechanisms related to invasion of the host cell, a crucial step in the development of infection, the specific nature of which they want to identify so that new treatment targets can be designed.

Researchers at Inserm and the CNRS recently deciphered the mechanism used by Apicomplexa to penetrate the cell, at cellular and molecular level. This involves a protein complex that assembles at the interface between the host cell membrane and the parasite membrane, forming a structure known as a moving junction (MJ). This is a highly original mechanism, since the parasite supplies both the receptor (RON2) which it inserts into the host cell membrane and the (AMA1) which it exposes at its surface. These proteins are not present in the host, so this mechanism is specific to Apicomplexa parasites. The researchers have identified a short-peptide region in RON2 capable of binding AMA1 which has very strong affinity and inhibits invasion by the parasite.

In collaboration with a Canadian team (University of Victoria, Vancouver), the researchers crystallised the AMA1- RON2 peptide complex in Toxoplasma and mapped out the amino acids necessary for AMA1 and RON2 to interact and form the MJ in vivo. The RON2 peptide is inserted into a hydrophobic groove in AMA1, allowing the parasite to overcome the mechanical constraints it encounters as it invades the . “By analysing the relation between structure and function and modelling the equivalent Plasmodium complex, we were able to identify an area on RON2 that is strongly implicated in the interaction specific to the various Apicomplexa parasites and thus understand the mechanisms used by antibodies targeting AMA1 to inhibit invasion,” explained Maryse Lebrun. Together, all this data can be used as the basis for developing drugs able to inhibit assembly of the AMA1-RON2 complex and the invasion of by P. falciparum.

Furthermore, since the AMA1-RON2 complex is also found for Apicomplexa that cause extremely costly veterinary infections such as avian coccidiosis, piroplasmosis, neosporosis and ovine , this strategy can also be applied in treating other parasitic infections. The results of the project may therefore have direct applications in human and veterinary medicine.

Explore further: Researchers discover new strategy germs use to invade cells

More information: Host cell invasion by Apicomplexan parasites: Insights from the structure of AMA1 in complex with a RON2 peptide - Michelle L. Tonkin, et al., Science, July 2011. dx.doi.org/10.1126/science.1204988

add to favorites email to friend print save as pdf

Related Stories

Toxoplasmosis infection trick revealed by scientists

May 10, 2007

Toxoplasmosis is a parasitic disease, primarily carried by cats. It is transmitted to humans by eating undercooked meat or through contact with cat faeces. It is particularly dangerous for pregnant women, whose foetuses can ...

Protein helps parasite survive in host cells

Dec 29, 2010

Researchers at Washington University School of Medicine in St. Louis have learned why changes in a single gene, ROP18, contribute substantially to dangerous forms of the parasite Toxoplasma gondii. The an ...

Malaria's newest pathway into human cells identified

Sep 24, 2010

Development of an effective vaccine for malaria is a step closer following identification of a key pathway used by the malaria parasite to infect human cells. The discovery, by researchers at The Walter and ...

Recommended for you

Researchers discover new strategy germs use to invade cells

14 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

15 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0