New technique sheds light on the mysterious process of cell division

May 18, 2011
A new technique that constructs models of primitive cells has demonstrated that the structure of a cell's membrane and cytoplasm may be as important to cell division as a cell's enzymes, DNA, or RNA. The study, which will be published in the Journal of the American Chemical Society, may provide important clues to how life originated from non-life and how modern cells came to exhibit complex behaviors.This image shows the asymmetric division of a primitive model cell composed of a lipid membrane that encapsulates a polymer solution. Two coexisting lipid-membrane phase domains are labeled red and green, and a protein that concentrates into the dextran-rich aqueous-phase domain is labeled in blue. After the division, one of the daughter cells inherits only red membrane and encapsulates the dextran-rich aqueous phase along with most of the protein molecules. The other daughter inherits both red and green membrane encapsulating the PEG-rich aqueous phase. Credit: Christine Keating lab, Penn State University

( -- Using a new technique in which models of primitive cells are constructed from the bottom up, scientists have demonstrated that the structure of a cell's membrane and cytoplasm may be as important to cell division as the specialized machinery -- such as enzymes, DNA or RNA -- which are found within living cells. Christine Keating, an associate professor of chemistry at Penn State University, and Meghan Andes-Koback, a graduate student in the Penn State Department of Chemistry, generated simple, non-living model "cells" with which they established that asymmetric division -- the process by which a cell splits to become two distinct daughter cells -- is possible even in the absence of complex cellular components, such as genes. The study, which will be published in the Journal of the American Chemical Society, may provide important clues to how life originated from non-life and how modern cells came to exhibit complex behaviors.

Keating explained that how split into asymmetrical daughter cells with very different compositions and different "fates" is something of a mystery. Cellular differentiation -- the process by which an unspecialized cell, such as a stem cell, becomes a specialized cell -- requires that different biological components reorganize themselves into each of the resulting daughter cells. For this apparently complex task to be accomplished, some important mechanism must guide both the reorganization of cellular parts and the maintenance of polarity -- the property of a cell to exhibit distinct front and back "sides" with specific placement and distribution of . "Many genes have been implicated in the maintenance of cell polarity and the facilitation of division into nonidentical daughter cells. It's thanks to changes in the expression of these genes that a skin cell becomes a skin cell and a heart cell becomes a heart cell," Keating said. "But our research took a different approach. We asked: In addition to the that guide asymmetrical cell division and polarity maintenance, what structural, biophysical factors might be at work, and how might these factors have predated the evolution of the complex genetic systems known to exist in modern cells?"

The team began with the hypothesis that because new arise by division of existing mother cells, certain inherited material -- such as the cell membrane -- could serve as a sort of informational "landmark." This landmark could set in motion and guide a cascade of chemical events related to ordered cell division and polarity maintenance. To test this hypothesis, Keating and Andes-Koback built model cells from the bottom up, allowing water, lipids, and polymers to assemble into mimics of the most basic constituents of real, living cells -- such as a membrane and . They then altered the osmotic pressure outside of the "cells" by adding sugar, which forced them to divide in a way that is reminiscent of how living, biological cells split under natural conditions.

A new technique that constructs models of primitive cells has demonstrated that the structure of a cell's membrane and cytoplasm may be as important to cell division as a cell's enzymes, DNA, or RNA. The study, which will be published in the Journal of the American Chemical Society, may provide important clues to how life originated from non-life and how modern cells came to exhibit complex behaviors. This image shows the second-generation division in the model-cell. The initial division was followed by budding of one of the daughter cells. The small bud contains a newly-formed dextran-rich aqueous phase coated by the red membrane domain, while the larger body of the model cell contains the PEG-rich aqueous phase coated by the green membrane domain. Credit: Christine Keating lab, Penn State University

"We observed that even model cells can divide in a structured way, which implies a kind of intrinsic order," Andes-Koback said. She explained that, like a biological cell, the model mother cell was designed to exhibit asymmetry in both its membrane and its cellular interior. The membrane asymmetry was modeled using two distinct lipid domains, while the cellular interior was modeled using two distinct polymers called polyethylene glycol (PEG) and dextran. These polymers form distinct domains, or compartments, on the inside of the model cells, with the dextran-rich compartment containing a higher concentration of a particular protein. The team observed that when the asymmetric mother cell divided, one daughter inherited one lipid domain surrounding the PEG-rich interior, and the other daughter inherited the other membrane domain surrounding the dextran-rich interior, which contained the larger portion of the protein. "Most importantly, we also found that when we varied the relative size of the two lipid domains, one daughter cell got both types of membrane and the other daughter got only one type," Andes-Koback said. "This was possible since the interior aqueous phases controlled the fission plane, and it is important because it provides a way to achieve a patch of distinct membrane to serve as a landmark for polarity in subsequent 'generations.'"

The team members note that the new modeling technique seems to suggests that simple chemical and physical interactions within cells -- such as self-assembly, phase separation, and partitioning -- can result in seemingly complex behaviors – like asymmetric division -- even when no additional cellular machinery is present. "Since there were no nucleic acids nor enzymes present, we clearly didn't have genes governing how our model cells would behave," Keating said. "So our study supports the hypothesis that structural and organizational 'cues' work in concert with genetic signals to achieve and maintain polarity through successive cell-division cycles."

Keating added that a working model of cellular dynamics requires a good understanding, not just of the role of genes, but also of the role of the structural organization of cells. "Once we have a firm grasp of what guides a cell's behavior, we might one day be able to design better disease treatments based on targeting errors in intracellular organization," she said.

Keating also explained that experimentation on non-living model that contain no DNA could help point to clues explaining the mysterious process of abiogenesis -- the formation of life from non-living matter, an event that happened at least once during our Earth's history. "Scientists have simulated early-Earth conditions in laboratories and have demonstrated that many amino acids -- the biochemical constituents of proteins -- can form through natural chemical reactions," Keating said. "We hope our research helps to fill in another part of the puzzle: how chemical and spatial organization may have contributed to the success of early life forms."

Explore further: Why plants don't get sunburn

Related Stories

Simple Model Cell is Key to Understanding Cell Complexity

May 15, 2008

A team of Penn State researchers has developed a simple artificial cell with which to investigate the organization and function of two of the most basic cell components: the cell membrane and the cytoplasm--the ...

Asymmetry due to perfect balance

Apr 25, 2007

Cell membranes are like two-dimensional fluids whose molecules are distributed evenly through lateral diffusion. But many important cellular processes depend on cortical polarity, the locally elevated concentration ...

Protein that triggers plant cell division

Jun 11, 2009

From the valves in a human heart to the quills on a porcupine to the petals on a summer lily, the living world is as varied as it is vast. For this to be possible, the cells that make up these living things must be just as ...

Location matters, even for genes

Feb 13, 2008

Moving an active gene from the interior of the nucleus to its periphery can inactivate that gene report scientists from the University of Chicago Medical Center in an article to be published early online Feb.13, 2008, in ...

New evidence that stem cells contain immortal DNA

Jun 27, 2006

EuroStemCell scientists at the Pasteur Institute in Paris have demonstrated one of the body’s most sophisticated ways of regulating the genetic material of stem cells. Their findings, published in Nature Cell Biology, show f ...

Recommended for you

Why plants don't get sunburn

23 hours ago

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 18, 2011
abiogenesis -- the formation of life from non-living matter

Ironically, no amount of evidence can refute this assertion.
What will change are the words' meaning.

New information means new meaning.
Wording changes.
I trust a cell's "behavior" to "recognize" "error".
A strange "guide" to "living" and "non-living" matter.

A wonderful expression:
"Intrinsic order"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.