Scientists finely control methane combustion to get different products

Apr 14, 2011
This diagram shows how catalysts of two gold atoms can help convert methane into ethylene at room temperature (shown in red) and into formaldehyde at lower temperatures (shown in blue). Credit: Uzi Landman

Scientists have discovered a method to control the gas-phase selective catalytic combustion of methane, so finely that if done at room temperature the reaction produces ethylene, while at lower temperatures it yields formaldehyde. The process involves using gold dimer cations as catalysts — that is, positively charged diatomic gold clusters. Being able to catalyze these reactions, at or below room temperature, may lead to significant cost savings in the synthesis of plastics, synthetic fuels and other materials. The research was conducted by scientists at the Georgia Institute of Technology and the University of Ulm. It appears in the April 14, 2011, edition of The Journal of Physical Chemistry C.

"The beauty of this process is that it allows us to selectively control the products of this catalytic system, so that if one wishes to create , and potentially methyl alcohol, one burns by tuning its with oxygen to run at lower temperatures, but if it's ethylene one is after, the reaction can be tuned to run at ," said Uzi Landman, Regents' and Institute Professor of Physics and director of the Center for Computational Materials Science at Georgia Tech.

Reporting last year in the journal Angewandte Chemie International Edition, a team that included theorists Landman and Robert Barnett from Georgia Tech and experimentalists Thorsten Bernhardt and Sandra Lang from the University of Ulm, found that by using gold dimer cations as catalysts, they can convert methane into ethylene at room temperature.

This time around, the team has discovered that, by using the same gas-phase gold dimer cation , methane partially combusts to produce formaldehyde at temperatures below 250 Kelvin or -9 degrees Fahrenheit. What's more, in both the room temperature reaction-producing ethylene, and the formaldehyde generation colder reaction, the gold dimer catalyst is freed at the end of the reaction, thus enabling the catalytic cycle to repeat again and again.

The temperature-tuned catalyzed methane partial combustion process involves activating the methane carbon-to-hydrogen bond to react with molecular oxygen. In the first step of the reaction process, methane and oxygen molecules coadsorb on the gold dimer cation at low temperature. Subsequently, water is released and the remaining oxygen atom binds with the methane molecule to form formaldehyde. If done at higher temperatures, the oxygen molecule comes off the gold catalyst, and the adsorbed methane molecules combine to form through the elimination of hydrogen molecules.

In both the current work, as well as in the earlier one, Bernhardt's team at Ulm conducted experiments using a radio-frequency trap, which allows temperature-controlled measurement of the reaction products under conditions that simulate realistic catalytic reactor environment. Landman's team at Georgia Tech performed first-principles quantum mechanical simulations, which predicted the mechanisms of the catalyzed reactions and allowed a consistent interpretation of the experimental observations.

In future work, the two research groups plan to explore the use of multi-functional alloy cluster catalysts in low temperature-controlled catalytic generation of synthetic fuels and selective partial combustion reactions.

Explore further: Novel microscopy pencils patterns in polymers at the nanoscale

Related Stories

Oxidation mechanisms at gold nanoclusters unraveled

Oct 08, 2010

Researchers believe that the puzzle of catalytic gold is now partially solved. Gold can catalyse an oxidation reaction by first oxidising itself. New research evidence on gold-oxide phase at room temperature ...

Greenhouse gas chemistry

Nov 30, 2010

If fossil fuels burn completely, the end products are carbon dioxide and water. Today the carbon dioxide is a waste product, one that goes into the air -- adding to global warming; or the oceans -- acidifying ...

Accounting for scale in catalysis

Mar 14, 2011

(PhysOrg.com) -- Depicting a catalyst's behavior in the real world just got a lot easier, thanks to scientists in the Institute for Interfacial Catalysis (IIC) at Pacific Northwest National Laboratory. They ...

Recommended for you

A renewable bioplastic made from squid proteins

5 hours ago

In the central Northern Pacific is an area that may be the size of Texas called the Great Pacific Garbage Patch. Made up of tons of floating plastic debris, the patch is killing seabirds and poisoning marine ...

Self-repairing subsea material

Dec 16, 2014

Embryonic faults in subsea high voltage installations are difficult to detect and very expensive to repair. Researchers believe that self-repairing materials could be the answer.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

zevkirsh
not rated yet Apr 14, 2011
whoa , this sounds big. as if you could simulate combustion along a whole spectrum of temperature gradients, and possible along pressure gradients as well? and find out that you get a whole array of products. interesting research.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.