New system for detection of single atoms: Records photon bursts from optical cavity

May 17, 2009
Step one in single-atom detection system. Credit: Joint Quantum Institute

Scientists have devised a new technique for real-time detection of freely moving individual neutral atoms that is more than 99.7% accurate and sensitive enough to discern the arrival of a single atom in less than one-millionth of a second, about 20 times faster than the best previous methods.

The system, described in Advance Online Publication at the web site by researchers at the Joint Quantum Institute (JQI) in College Park, MD, and the Universidad de Concepción in Chile, employs a novel means of altering the polarization of laser light trapped between two highly-reflective mirrors, in effect letting the scientists "see" atoms passing through by the individual photons that they scatter.

Step two in single-atom detection system. Credit: Joint Quantum Institute

The ability to detect single atoms and molecules is essential to progress in many areas, including research, chemical detection and biochemical analysis.

"Existing protocols have been too slow to detect moving atoms, making it difficult to do something to them before they are gone. Our work relaxes that speed constraint," says coauthor David Norris of JQI. "Moreover, it is hard to distinguish between a genuine detection and a random 'false positive' without collecting data over a large period of time. Our system both filters the signal and reduces the detection time."

The scientists trap and cool a small population of atoms (rubidium is used in the current experiment) in a vacuum enclosure in such a way that they drop slowly, one at a time, through a hole 1.5 millimeters wide at the bottom of the trap. [See Figure 1.] The atom then falls about 8 centimeters until it enters a tiny chamber, or cavity, that is fitted on opposite sides with highly reflective mirrors that face one another at a distance of about 2 millimeters. Passing through the center of both mirrors is a laser beam of wavelength 780 nanometers - just slightly longer than visible red light. The beam excites the atom as it falls between the mirrors, causing it to reradiate the light in all directions.

That arrangement is a familiar one for labs studying the interaction of atoms and photons. The JQI system, however, has two distinctively unique features.

First, the researchers use two polarizations of cavity light simultaneously: one (horizontal) which is pumped in to efficiently excite the atoms, and the other (vertical) which only appears when emitted by an atom inside the cavity. [See Figure 2.] Although the descent of the atom through the chamber takes only 5 millionths of a second, that is 200 times longer than it takes for the atom to become excited and shed a photon, so this process can happen multiple times before the atom is gone.

Second, they create a magnetic field inside the cavity, which causes the laser light polarization to rotate slightly when an atom is present. Known as the Faraday effect, this phenomenon is typically very weak when observed with a single atom. However, since the light reflecting between the mirrors passes by the atom about 10,000 times, the result is a much larger rotation of a few degrees. This puts significantly more of the into the vertical polarization, making the atoms easier to "see."

The light eventually escapes from the cavity and is fed through a polarizing beamsplitter which routes photons with horizontal polarization to one detector, and vertical polarization to another. Each arriving photon generates a unique time stamp whenever it triggers its detector. [See Figure 3.]

Step three in single-atom detection system. Credit: Joint Quantum Institute

Although the detector for the vertically polarized light should only be sensitive to light coming from an atom in the cavity, it can be fooled occasionally by stray light in the room. But because there are multiple emissions from each atom, there will be a burst of photons whenever an atom passes between the mirrors. This is the signature that the researchers use to confirm an atom detection.

"The chief difficulty lies in verifying that our detector is really sensitive enough to see single atoms, and not just large groups of them," says team leader Luis A. Orozco of JQI. "Fortunately, the statistics of the light serve as a fingerprint for single-atom emission, and we were able to utilize that information in our system."

More information: "Photon Burst Detection of Single in an Optical Cavity," M.L. Terraciano, R. Olson Knell, D.G. Norris, J. Jing, A. Fernandez and L.A. Orozco,, DOI 10.1038/NPHYS1282 .

Source: University of Maryland (news : web)

Explore further: Physicists Turn Rubidium Atom Into a Single-Photon Server

Related Stories

Physicists Turn Rubidium Atom Into a Single-Photon Server

March 12, 2007

Every time you switch on a light bulb, 10 to the power of 15 visible photons, the elementary particles of light, are illuminating the room in every second. If that is too many for you, light a candle. If that is still too ...

Controlling Photons for Use in Quantum Computing

February 13, 2007

“Quantum information science makes use of the quantum nature of particles to perform computation,” Gerhard Rempe explains to “One approach is to use single particles of light – photons – as the basis ...

Detector can count atom by atom

August 10, 2006

More than 80 years have passed since Louis de Broglie discovered that matter can act like a wave as well as a particle. With advances in technology, scientists have recently begun exploiting this strange property of everyday ...

Atoms Under Control

October 11, 2005

Max Planck researchers lay the foundations for a distributed quantum computer with the "quasipermanent" storing of an atom between two mirrors Complex computing operations could be greatly accelerated through massive parallel ...

Yale scientists bring quantum optics to a microchip

September 8, 2004

A report in the journal Nature describes the first experiment in which a single photon is coherently coupled to a single superconducting qubit (quantum bit or "artificial atom"). This represents a new paradigm in which quantum ...

Recommended for you

Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

Blocks of ice demonstrate levitated and directed motion

December 7, 2016

Resembling the Leidenfrost effect seen in rapidly boiling water droplets, a disk of ice becomes highly mobile due to a levitating layer of water between it and the smooth surface on which it rests and melts. The otherwise ...

The case for co-decaying dark matter

December 5, 2016

(—There isn't as much dark matter around today as there used to be. According to one of the most popular models of dark matter, the universe contained much more dark matter early on when the temperature was hotter. ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) May 18, 2009
electric plasma grid to extract radioactive particles.seemingly a plasma grid (plasma type unknown) could attract or extract radioactive particles like a magnet & using microwave zone before the grid to incinerate radioactive particles before they get to grid.also radioactive waste microwave incinerator,projects that could lead to new discoveries and a cleaner planet.ideas from movies sahara,spys like us
not rated yet May 20, 2009
How does one make a "small population of rubidium atoms" drop one at a time into the trap? The article says they do it with temperature somehow. Also, why such a large hole? The idea of making a single atom do something you want it to, when and exactly where you want it to, is hard for me to grasp. Please, don't be too unkind in your responses.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.