Yale scientists bring quantum optics to a microchip

September 8, 2004

A report in the journal Nature describes the first experiment in which a single photon is coherently coupled to a single superconducting qubit (quantum bit or "artificial atom"). This represents a new paradigm in which quantum optics experiments can be performed in a micro-chip electrical circuit using microwaves instead of visible photons and lasers. The work is a collaboration of the laboratory of Professor Robert Schoelkopf and the theory group of Professor Steven Girvin in the Departments of Applied Physics and Physics at Yale University.

The Yale researchers have constructed a miniaturized superconducting cavity whose volume is more than one million times smaller than the cavities used in corresponding current atomic physics experiments. The microwave photon is, therefore, "trapped" allowing it to be repeatedly absorbed and reemitted by the 'atom' many times before it escapes the cavity. The 'atom' is a superconducting circuit element containing approximately one billion aluminum atoms acting in concert.

Because of the tiny cavity volume and large 'atom' size, the photon and 'atom' are very strongly coupled together and energy can be rapidly exchanged between them. Under the peculiar rules of quantum mechanics, the state of the system becomes a coherent superposition of two simultaneous possibilities: the energy is either an excitation of the atom, or it is a photon. It is this superposition that was observed in the Yale experiment.

In addition to allowing fundamental tests of quantum mechanics and quantum optics in a completely new format, this new system has many desirable features for a quantum computer. In a quantum computer the bits of information are replaced by qubits (e.g. an atom), which, paradoxically, can harness quantum uncertainty to vastly speed up certain types of calculations. The ability to couple qubits to photons, demonstrated by the Yale group, could allow qubits on a chip to be wired together via a "quantum information bus" carrying single photons.

Source: Yale University

Explore further: Exome sequencing allows scientists to find the mutations responsible for an array of ailments

Related Stories

Quantum data takes a ride on sound waves

September 22, 2017

Yale scientists have created a simple-to-produce device that uses sound waves to store quantum information and convert it from one form to another, all inside a single, integrated chip.

Artificial atoms make microwave photons countable

February 1, 2007

Using artificial atoms on a chip, Yale physicists have taken the next step toward quantum computing by demonstrating that the particle nature of microwave photons can now be detected, according to a report spotlighted in ...

Scientists track quantum errors in real time

July 14, 2014

(Phys.org) —Scientists at Yale University have demonstrated the ability to track real quantum errors as they occur, a major step in the development of reliable quantum computers. They report their results in the journal ...

At Yale, quantum computing is a (qu)bit closer to reality

February 15, 2012

(PhysOrg.com) -- Physicists at Yale University have taken another significant step in the development of quantum computing, a new frontier in computing that promises exponentially faster information processing than the most ...

Recommended for you

World's smallest tape recorder is built from microbes

November 23, 2017

Through a few clever molecular hacks, researchers at Columbia University Medical Center have converted a natural bacterial immune system into a microscopic data recorder, laying the groundwork for a new class of technologies ...

The world needs to rethink the value of water

November 23, 2017

Research led by Oxford University highlights the accelerating pressure on measuring, monitoring and managing water locally and globally. A new four-part framework is proposed to value water for sustainable development to ...

'Lost' 99% of ocean microplastics to be identified with dye?

November 23, 2017

The smallest microplastics in our oceans – which go largely undetected and are potentially harmful – could be more effectively identified using an innovative and inexpensive new method, developed by researchers at the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.