Changing a 2D material's symmetry can unlock its promise

Changing a 2D material's symmetry can unlock its promise
Deforming MoS2 leads to the observation of the flexo-photovoltaic effect. Credit: Jie Jiang, Jian Shi

Optoelectronic materials that are capable of converting the energy of light into electricity, and electricity into light, have promising applications as light-emitting, energy-harvesting, and sensing technologies. However, devices made of these materials are often plagued by inefficiency, losing significant useful energy as heat. To break the current limits of efficiency, new principles of light-electricity conversion are needed.

For instance, many materials that exhibit efficient properties are constrained by , a physical property that limits engineers' control of electrons in the material and their options for designing novel or efficient devices. In research published today in Nature Nanotechnology, a team of materials scientists and engineers, led by Jian Shi, an associate professor of materials science and engineering at Rensselaer Polytechnic Institute, used a strain gradient in order to break that inversion symmetry, creating a novel optoelectronic phenomenon in the promising material (MoS2)—for the first time.

To break the inversion symmetry, the team placed a vanadium oxide (VO2) wire underneath a sheet of MoS2. Molybdenum disulfide is a flexible material, Shi said, so it deformed its original shape to follow the curve of the VO2 wire, creating a gradient within its . Imagine what would happen if you placed a piece of paper over a pencil that was sitting on a table. The varied tension created in the paper is like the strain gradient formed in the MoS2 lattice.

That gradient, Shi said, breaks the material's inversion symmetry and allows electrons traveling within the crystal to be manipulated. The unique photo-response observed near the strain gradient allows a current to flow through the material. It's known as the flexo-photovoltaic effect, and it could be harnessed to design novel and/or high-efficiency optoelectronics.

"This is the first demonstration of such an effect in this material," Shi said. "If we have a solution that does not create heat during photon-electricity conversion, then the electronic devices or circuits could be improved."

Vanadium oxide is very sensitive to temperature, so the team was also able to demonstrate that the flexo-photovoltaic effect brought about temperature dependence at the site where the MoS2 and VO2 materials meet—changing the lattice's accordingly.

"This discovery suggests a novel principle that could be used for remote thermal sensing," said Jie Jiang, a postdoctoral research fellow in Shi's lab and the first author on this paper.

What the team was able to demonstrate here, Shi said, not only shows great promise for this material, but also suggests the potential of using such an approach in engineering other materials with favorable optoelectronic properties that are plagued by symmetry.

More information: Jie Jiang et al, Flexo-photovoltaic effect in MoS2, Nature Nanotechnology (2021). DOI: 10.1038/s41565-021-00919-y

Journal information: Nature Nanotechnology

Citation: Changing a 2D material's symmetry can unlock its promise (2021, June 17) retrieved 19 March 2024 from https://phys.org/news/2021-06-2d-material-symmetry.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Light-induced twisting of Weyl nodes switches on giant electron current

12 shares

Feedback to editors