Researchers modify magnetic behavior of exotic materials

People are not the only ones to be occasionally frustrated. Some crystals also show frustrations. They do so whenever their elementary magnets, the magnetic spins, cannot align properly. Cesium copper chloride (Cs2CuCl4) ...

How to freeze heat conduction

Physicists have discovered a new effect, which makes it possible to create excellent thermal insulators which conduct electricity. Such materials can be used to convert waste heat into electrical energy.

New insights into magnetic quantum effects in solids

Using a new computational method, an international collaboration has succeeded for the first time in systematically investigating magnetic quantum effects in the well-known 3-D pyrochlore Heisenberg model. The surprising ...

Iron-rich lamellae in a semiconductor

There is often a pronounced symmetry when you look at the lattice of crystals: It doesn't matter where you look—the atoms are uniformly arranged in every direction. This behavior would also be expected of a crystal, which ...

page 1 from 13

Crystal structure

In mineralogy and crystallography, a crystal structure is a unique arrangement of atoms in a crystal. A crystal structure is composed of a motif, a set of atoms arranged in a particular way, and a lattice. Motifs are located upon the points of a lattice, which is an array of points repeating periodically in three dimensions. The points can be thought of as forming identical tiny boxes, called unit cells, that fill the space of the lattice. The lengths of the edges of a unit cell and the angles between them are called the lattice parameters. The symmetry properties of the crystal are embodied in its space group. A crystal's structure and symmetry play a role in determining many of its properties, such as cleavage, electronic band structure, and optical properties.

This text uses material from Wikipedia, licensed under CC BY-SA