Uncovering unexpected properties in a complex quantum material

Anew study describes previously unexpected properties in a complex quantum material known as Ta2NiSe5. Using a novel technique developed at Penn, these findings have implications for developing future quantum devices and ...

Changing a 2D material's symmetry can unlock its promise

Optoelectronic materials that are capable of converting the energy of light into electricity, and electricity into light, have promising applications as light-emitting, energy-harvesting, and sensing technologies. However, ...

Mathematician suggests a scheme for solving telegraph equations

A mathematician from RUDN University suggested a stable difference scheme for solving inverse problems for elliptic-telegraph and differential equations that are used to describe biological, physical, and sociological processes. ...

Inheritance in plants can now be controlled specifically

A new application of the CRISPR/Cas molecular scissors promises major progress in crop cultivation. At Karlsruhe Institute of Technology (KIT), researchers from the team of molecular biologist Holger Puchta have succeeded ...

page 1 from 3