Hydrogen fuel cells: With a database of 500,000 materials, researchers zero in on best bets

Credit: CC0 Public Domain

As researchers work toward next-generation electric vehicles, they may be hitting their heads on the ceiling of what lithium ion batteries can deliver.

Meanwhile, a team of researchers from the University of Michigan are pushing the performance of a competing electric vehicle technology— —to new heights.

A hydrogen fuel cell is a zero-harmful-emissions power source that acts like a cross between a battery and a gas tank. It employs hydrogen as the fuel and harnesses the reaction between hydrogen and oxygen to produce electricity. The only "emission" is water.

One limitation of this technology is the ability to store sufficient quantities of hydrogen onboard. The U-M researchers have identified ways to cram more hydrogen than ever before into small storage structures called , increasing the , and, as a result, the projected driving range of a fuel cell vehicle.

Metal organic frameworks, or MOFs, are comprised of metal ions coupled with organic molecules. Their porous nature makes some MOFs among the most promising ways to store hydrogen.

Michigan researchers gathered information on all available MOFs, those previously constructed as well as those that remain hypothetical, into a database. High-throughput computer simulations were then used to scour the resulting databank of nearly 500,000 MOFs for those having promising capacities.

Three candidates were identified that could surpass previous records for hydrogen storage. The researchers then synthesized these materials and demonstrated their performance.

"We're demonstrating more energy-dense storage than previously shown," said Don Siegel, U-M associate professor of mechanical engineering. "You might describe it as more efficient—putting more energy into a smaller space and in a lighter package."

As published this week in Nature Communications, the three MOFs are dubbed SNU-70, UMCM-9 and PCN-610/NU-100. Each surpassed the performance of IRMOF-20, another MOF identified by the team in 2017.

"These materials establish a new high-water mark for usable hydrogen capacities in MOFs," the study states.

Hydrogen fuel cells have long held promise as a no-emission power source for . They have, however, taken a backseat to lithium ion batteries, which you'll find inside most of the portable electronic devices being produced today—from cell phones and tablets, to digital cameras and electric vehicles.

Hydrogen fuel cell systems have several advantages over lithium ion batteries. The most in the universe, hydrogen is far more common than lithium, so there is little chance of there ever being a supply issue.

And a hydrogen fuel cell car can recharge at a station in a few minutes, about the same time it takes to fill a gas tank now. In contrast, full charge times for lithium battery electric vehicles are typically measured in hours.

There are drawbacks that have limited the auto industry's embrace of hydrogen, however. For example, producing hydrogen is currently much more expensive than is extracting and refining petroleum.

Transportation of hydrogen fuel is another issue. As a gas, it's difficult to move and store large quantities of hydrogen efficiently, raising questions of whether it needs to be moved in liquid form in semitrucks or shuttled through pipelines as a gas.

But the lure of what hydrogen could potentially mean for cars, and the environment, has kept major automakers like Ford, Hyundai, Toyota, Honda and GM involved in its development.

Electric designers are constantly looking to decrease the size of a car's power system as a means of increasing efficiency. By increasing the quantity of hydrogen that can be stored in a MOF adsorbent, Siegel said, the pressure needed to store it can be reduced. The size of the tank can also be reduced.

"We want to eliminate the energy storage problem for vehicles. This shows we're moving in that direction," Siegel said.

More information: Alauddin Ahmed et al. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks, Nature Communications (2019). DOI: 10.1038/s41467-019-09365-w

Journal information: Nature Communications

Citation: Hydrogen fuel cells: With a database of 500,000 materials, researchers zero in on best bets (2019, April 5) retrieved 25 September 2023 from https://phys.org/news/2019-04-hydrogen-fuel-cells-database-materials.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Paving the way for more efficient hydrogen cars


Feedback to editors