Super superlattices: The moiré patterns of three layers change the electronic properties of graphene

March 8, 2019, University of Basel
A graphene layer (black) of hexagonally arranged carbon atoms is placed between two layers of boron nitride atoms, which are also arranged hexagonally with a slightly different size. The overlap creates honeycomb patterns in various sizes. Credit: Swiss Nanoscience Institute, University of Basel

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a "magical" angle of 1.1 degrees turns graphene superconducting – a striking example of how the combination of atomically thin can produce completely new electrical properties.

Precision alignment

Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel have now taken this concept one step further. They placed a of graphene between two boron nitride layers, which is often serves to protect the sensitive carbon structure. Doing so, they aligned the layers very precisely with the crystal lattice of the graphene.

The effect observed by the physicists in Professor Christian Schönenberger's team is commonly known as a moiré pattern: when two regular patterns are superimposed, a new results with a larger periodic lattice.

New three-layer superlattice

Lujun Wang, a member of the SNI Ph.D. School and researcher in Schönenberger's team, also observed effects of this kind of superlattice when he combined layers of boron nitride and graphene. The atoms are arranged hexagonally in all layers. If they are stacked on top of each other, larger regular patterns emerge, with a size depending on the angle between the layers.

It had already been shown that this works with a two-layer combination of graphene and boron nitride, but the effects due to a second boron nitride layer had not yet been found.

When the physicists from Basel experimented with three layers, two superlattices were formed between the and the upper and the lower layer, respectively. The superposition of all three layers created an even larger superstructure than possible with only one layer.

Scientists are very interested in these types of synthetic materials, since the different moiré patterns can be used to change or artificially produce new electronic material properties.

"To put it simply, the atomic patterns determine the behavior of electrons in a material, and we are combining different naturally occurring patterns to create new synthetic materials," explains Dr. Andreas Baumgartner, who supervised the project. "Now we have discovered effects in these tailor-made electronic devices that are consistent with a three-layer superstructure," he adds.

Explore further: 1 + 1 does not equal 2 for graphene-like 2-D materials

More information: Lujun Wang et al. New Generation of Moiré Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures, Nano Letters (2019). DOI: 10.1021/acs.nanolett.8b05061

Related Stories

1 + 1 does not equal 2 for graphene-like 2-D materials

March 6, 2019

Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, ...

New method of characterizing graphene

May 30, 2017

Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other ...

Recommended for you

Study reveals properties of a Type Ib supernova in NGC 4080

March 25, 2019

A recent study conducted by astronomers has revealed important observational properties of a Type Ib supernova designated MASTER OT J120451.50+265946.6, which exploded in the galaxy NGC 4080. The research, presented in a ...

Catalyst advance removes pollutants at low temperatures

March 25, 2019

Researchers at Washington State University, University of New Mexico, Eindhoven University of Technology, and Pacific Northwest National Laboratory have developed a catalyst that can both withstand high temperatures and convert ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.